JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MORSE HOMOLOGY ON NONCOMPACT MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MORSE HOMOLOGY ON NONCOMPACT MANIFOLDS
Cieliebak, Kai; Frauenfelder, Urs;
  PDF(new window)
 Abstract
Given a Morse function on a manifold whose moduli spaces of gradient flow lines for each action window are compact up to breaking one gets a bidirect system of chain complexes. There are different possibilities to take limits of such a bidirect system. We discuss in this note the relation between these different limits.
 Keywords
Morse homology;bidirect system;direct and inverse limits;
 Language
English
 Cited by
1.
Vanishing of Rabinowitz Floer homology on negative line bundles, Mathematische Zeitschrift, 2016  crossref(new windwow)
2.
Symplectic Tate homology, Proceedings of the London Mathematical Society, 2016, 112, 1, 169  crossref(new windwow)
3.
Continuation homomorphism in Rabinowitz Floer homology for symplectic deformations, Mathematical Proceedings of the Cambridge Philosophical Society, 2011, 151, 03, 471  crossref(new windwow)
4.
Homological approach to problems with jumping non-linearity, Nonlinear Analysis: Theory, Methods & Applications, 2016, 144, 165  crossref(new windwow)
5.
Rabinowitz–Floer homology for superquadratic Dirac equations on compact spin manifolds, Journal of Fixed Point Theory and Applications, 2013, 13, 1, 175  crossref(new windwow)
6.
Cuplength estimates in Morse cohomology, Journal of Topology and Analysis, 2016, 08, 02, 243  crossref(new windwow)
 References
1.
K. Cieliebak and U. Frauenfelder, A Floer homology for exact contact embeddings, Pacific J. Math. 239 (2009), no. 2, 251-316. crossref(new window)

2.
K. Cieliebak, U. Frauenfelder, and A. Oancea, Rabinowitz Floer homology and symplectic homology, Ann. Sci. Ec. Norm Super. (4) 43 (2010), no. 6, 957-1015.

3.
B. Eckmann and P. Hilton, Commuting limits with colimits, J. Algebra 11 (1969), 116- 144. crossref(new window)

4.
A. Frei and J. Macdonald, Limits in categories of relations and limit-colimit commutation, J. Pure Appl. Algebra 1 (1971), no. 2, 179-197. crossref(new window)

5.
K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part I, AMS/IP Studies in Advanced Mathematics Vol. 46.1, American Mathematical Society and International Press, 2009.

6.
A. Grothendieck, Elements de geometrie algebrique. III. Etude cohomologique des faisceaux coherents. I. Inst. Hautes Etudes Sci. Publ. Math. No. 11 (1961), 167 pp, 14.05

7.
H. Hofer and D. Salamon, Floer homology and Novikov rings, The Floer memorial volume, 483-524, Progr. Math., 133, Birkhauser, Basel, 1995.

8.
H. Hofer, C. Taubes, A. Weinstein, and E. Zehnder, The Floer Memorial Volume, Birkhauser, Basel, 1995.

9.
H. Hofer, K. Wysocki, and E. Zehnder, A General Fredholm Theory I: A Splicing-Based Differential Geometry, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 841-876.

10.
J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341. crossref(new window)

11.
G. Nobeling, Uber die Derivierten des Inversen und des direkten Limes einer Modul-familie, Topology 1 (1962), 47-61. crossref(new window)

12.
K. Ono, On the Arnold conjecture for weakly monotone symplectic manifolds, Invent. Math. 119, (1995), no. 3, 519-537. crossref(new window)

13.
S. Piunikhin, D. Salamon, and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, Contact and symplectic geometry (Cambridge, 1994), 171-200, Publ. Newton Inst., 8, Cambridge Univ. Press, Cambridge, 1996.

14.
J. Roos, Sur les foncteurs derives de lim.Applications., C. R. Acad. Sci. Paris 252 (1961), 3702-3704.

15.
M. Schwarz, Morse Homology, Birkhauser Verlag, 1993.

16.
E. Spanier, Algebraic Topology, McGraw-Hill Book Co., New York-Toronto, Ont.- London, 1966.

17.
C. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.