JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE CLASSIFICATION OF LOG ENRIQUES SURFACES OF RANK 18
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE CLASSIFICATION OF LOG ENRIQUES SURFACES OF RANK 18
Wang, Fei;
  PDF(new window)
 Abstract
Log Enriques surface is a generalization of K3 and Enriques surface. We will classify all the rational log Enriques surfaces of rank 18 by giving concrete models for the realizable types of these surfaces.
 Keywords
automorphisms of K3 surfaces;log Enriques surfaces;quotient singularities;
 Language
English
 Cited by
1.
Cylinders in del Pezzo Surfaces, International Mathematics Research Notices, 2016, rnw063  crossref(new windwow)
 References
1.
M. F. Atiyah and G. B. Segal, The index of elliptic operators. II, Ann. of Math. (2) 87 (1968), 531-545. crossref(new window)

2.
M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604. crossref(new window)

3.
K. Oguiso and D.-Q. Zhang, On extremal log Enriques surfaces. II, Tohoku Math. J. (2) 50 (1998), no. 3, 419-436. crossref(new window)

4.
K. Oguiso and D.-Q. Zhang, On the complete classification of extremal log Enriques surfaces, Math. Z. 231 (1999), no. 1, 23-50. crossref(new window)

5.
T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geom- etry, pp. 119-136. Iwanami Shoten, Tokyo, 1977.

6.
T. Shioda and H. Inose, On the most algebraic K3 surfaces and the most extremal log Enriques surfaces, Amer. J. Math. 118 (1996), no. 6, 1277-1297. crossref(new window)

7.
K. Ueno, A remark on automorphisms of Enriques surfaces, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 23 (1976), no. 1, 149-165.

8.
D.-Q. Zhang, Logarithmic Enriques surfaces, J. Math. Kyoto Univ. 31 (1991), no. 2, 419-466.

9.
D.-Q. Zhang, Logarithmic Enriques surfaces. II, J. Math. Kyoto Univ. 33 (1993), no. 2, 357- 397.