JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CLASSIFICATION OF BETTI DIAGRAMS OF VARIETIES OF ALMOST MINIMAL DEGREE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CLASSIFICATION OF BETTI DIAGRAMS OF VARIETIES OF ALMOST MINIMAL DEGREE
Lee, Wan-Seok; Park, Eui-Sung;
  PDF(new window)
 Abstract
In this article we study the problem to determine all occurring Betti diagrams of varieties of almost minimal degree, i.e. deg(X)
 Keywords
minimal free resolution;Betti number;rational normal scroll;varieties of low degree;
 Language
English
 Cited by
1.
On syzygies of divisors on rational normal scrolls, Mathematische Nachrichten, 2014, 287, 11-12, 1383  crossref(new windwow)
2.
Projective subvarieties having large Green–Lazarsfeld index, Journal of Algebra, 2012, 351, 1, 175  crossref(new windwow)
 References
1.
M. Brodmann and P. Schenzel, On varieties of almost minimal degree in small codimension, J. Algebra 305 (2006), no. 2, 789-801. crossref(new window)

2.
M. Brodmann and P. Schenzel, Arithmetic properties of projective varieties of almost minimal degree, J. Algebraic Geom. 16 (2007), no. 2, 347-400. crossref(new window)

3.
M. L. Catalano-Johnson, The possible dimensions of the higher secant varieties, Amer. J. Math. 118 (1996), no. 2, 355-361. crossref(new window)

4.
D. Eisenbud and J. Harris, On varieties of minimal degree (a centennial account), Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 3-13, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.

5.
T. Fujita, Classification Theories of Polarized Varieties, London Mathematical Society Lecture Note Series, 155. Cambridge University Press, Cambridge, 1990.

6.
J. Harris, Algebraic Geometry. A First Course, Springer-Velag New York, 1995.

7.
L. T. Hoa, On minimal free resolutions of projective varieties of degree = codimension+2, J. Pure Appl. Algebra 87 (1993), no. 3, 241-250. crossref(new window)

8.
L. T. Hoa, J. Stuckrad, and W. Vogel, Towards a structure theory for projective varieties of degree = codimension + 2, J. Pure Appl. Algebra 71 (1991), no. 2-3, 203-231. crossref(new window)

9.
U. Nagel, Arithmetically Buchsbaum divisors on varieties of minimal degree, Trans. Amer. Math. Soc. 351 (1999), no. 11, 4381-4409. crossref(new window)

10.
U. Nagel, Minimal free resolutions of projective subschemes of small degree, Syzygies and Hilbert functions, 209-232, Lect. Notes Pure Appl. Math., 254, Chapman & Hall/CRC, Boca Raton, FL, 2007.

11.
E. Park, Projective curves of degree = codimension+2, Math. Z. 256 (2007), no. 3, 685-697. crossref(new window)

12.
E. Park, Smooth varieties of almost minimal degree, J. Algebra 314 (2007), no. 1, 185-208. crossref(new window)

13.
E. Park, On secant loci and simple linear projections of some projective varieties, preprint.