JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Np-SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Np-SPACES
Kim, Yun-Su;
  PDF(new window)
 Abstract
We introduce a new norm, called the -norm (1 p < on the space (V,W) where V and W are abstract operator spaces. By proving some fundamental properties of the space (V,W), we also discover that if W is complete, then the space (V,W) is also a Banach space with respect to this norm for 1 p < .
 Keywords
completely bounded maps;Np-spaces;Np-norm;operator spaces;
 Language
English
 Cited by
 References
1.
W. Arveson, Subalgebras of $C^*$-algebras, Acta Math. 123 (1969), 141-224. crossref(new window)

2.
E. Effros and Z. Ruan, Operator Spaces, Oxford University Press, 2000.

3.
V. Paulsen, Completely Bounded Maps and Dilations, Longman Scientic & Technical, 1986.

4.
V. Paulsen, Representations of function algebras, abstract operator spaces, and Banach space geometry, J. Funct. Anal. 109 (1992), no. 1, 113-129. crossref(new window)

5.
G. Pisier, Introduction to Operator Space Theory, Cambridge University Press, 2003.

6.
R. Smith, Completely bounded maps between $C^*$-algebras, J. London Math. Soc. (2) 27 (1983), no. 1, 157-166. crossref(new window)

7.
W. Stinespring, Positive functions on $C^*$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.

8.
G. Wittstock, Ein operatorwertiger Hahn-Banach Satz, J. Funct. Anal. 40 (1981), no. 2, 127-150. crossref(new window)

9.
G. Wittstock, Extensions of completely bounded module morphisms, Proc. Conference on Operator Algebras and Group Representations, Neptum, Pitman, 1983.