JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON LEFT AND RIGHT BROWDER OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON LEFT AND RIGHT BROWDER OPERATORS
Zivkovic-Zlatanovic, Snezana C.; Djordjevic, Dragan S.; Harte, Robin E.;
  PDF(new window)
 Abstract
We discuss the perturbation theory of "left" and "right" Browder operators, which come somewhere between Browder operators and semi Browder operators.
 Keywords
semi Browder;Riesz perturbations;
 Language
English
 Cited by
1.
Left–Right Fredholm and Weyl Spectra of the Sum of Two Bounded Operators and Applications, Mediterranean Journal of Mathematics, 2014, 11, 3, 939  crossref(new windwow)
2.
Ruston, Riesz and perturbation classes, Journal of Mathematical Analysis and Applications, 2012, 389, 2, 871  crossref(new windwow)
3.
On Closed Upper and Lower Semi-Browder Operators, Mediterranean Journal of Mathematics, 2015, 12, 3, 1033  crossref(new windwow)
4.
Stability of the S-left and S-right essential spectra of a linear operator, Acta Mathematica Scientia, 2014, 34, 6, 1922  crossref(new windwow)
5.
Polynomially Riesz perturbations, Journal of Mathematical Analysis and Applications, 2013, 408, 2, 442  crossref(new windwow)
 References
1.
J. J. Buoni, R. E. Harte, and T. Wickstead, Upper and lower Fredholm spectra. I, Proc. Amer. Math. Soc. 66 (1977), no. 2, 309-314.

2.
B. P. Duggal, Perturbations of operators satisfying a local growth condition, Extracta Math. 23 (2008), no. 1, 29-42.

3.
R.E. Harte, Spectral mapping theorems, Proc. Royal Irish Acad. Sect. A 72 (1972), 89-107.

4.
R.E. Harte, Invertibility and Singularity, Dekker 1988.

5.
R.E. Harte, On Kato non-singularity, Studia Math. 117 (1996), no. 2, 107-114.

6.
R. E. Harte and A.-H. Kim, Weyl's theorem, tensor products and multiplication operators, J. Math. Anal. Appl. 336 (2007), no. 2, 1124-1131. crossref(new window)

7.
R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115-2124. crossref(new window)

8.
R. E. Harte and A. W. Wickstead, Boundaries, hulls and spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A 81 (1981), no. 2, 201-208.

9.
H. Heuser, Functional Analysis, Wiley Interscience, Chichester, 1982.

10.
J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), no. 3, 367-381. crossref(new window)

11.
V. Muller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Birkhauser 2007.

12.
V. Rakocevic, Essential spectrum in Banach algebras, Doctoral dissertation, Nis 1983.

13.
V. Rakocevic, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), no. 2, 193-198. crossref(new window)

14.
V. Rakocevic, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 2, 197-209. crossref(new window)

15.
V. Rakocevic, Semi Browder operators and perturbations, Studia Math. 122 (1996), 131-137.

16.
M. Schechter and R. Whitley, Best Fredholm perturbation theorems, Studia Math., 90 (1988), no. 3, 175-190.

17.
S. Zivkovic, Semi-Fredholm operators and perturbations, Inst. Math. (Beograd) (N.S.) 61(75) (1997), 73-89.