rling representation formula;"/> rling representation formula;"/> SPACELIKE MAXIMAL SURFACES, TIMELIKE MINIMAL SURFACES, AND BJÖRLING REPRESENTATION FORMULAE | Korea Science
JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SPACELIKE MAXIMAL SURFACES, TIMELIKE MINIMAL SURFACES, AND BJÖRLING REPRESENTATION FORMULAE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SPACELIKE MAXIMAL SURFACES, TIMELIKE MINIMAL SURFACES, AND BJÖRLING REPRESENTATION FORMULAE
Kim, Young-Wook; Koh, Sung-Eun; Shin, Hea-Yong; Yang, Seong-Deog;
  PDF(new window)
 Abstract
We show that some class of spacelike maximal surfaces and timelike minimal surfaces match smoothly across the singular curve of the surfaces. Singular Bjrling representation formulae for generalized spacelike maximal surfaces and for generalized timelike minimal surfaces play important roles in the explanation of this phenomenon.
 Keywords
spacelike maximal surface;timelike minimal surface;Bjrling representation formula;
 Language
English
 Cited by
1.
Blackfolds, plane waves and minimal surfaces, Journal of High Energy Physics, 2015, 2015, 7  crossref(new windwow)
2.
Timelike Constant Mean Curvature Surfaces with Singularities, The Journal of Geometric Analysis, 2014, 24, 3, 1641  crossref(new windwow)
3.
Zero mean curvature surfaces in containing a light-like line, Comptes Rendus Mathematique, 2012, 350, 21-22, 975  crossref(new windwow)
 References
1.
J. A. Aledo and J. A. Galvez, A Weierstrass representation for linear Weingarten spacelike surfaces of maximal type in the Lorentz-Minkowski space, J. Math. Anal. Appl. 283 (2003), no. 1, 25-45. crossref(new window)

2.
J. A. Aledo, J. A. Galvez, and P. Mira, Bjorling Representation for spacelike surfaces with H = cK in $L^3$, Proceedings of the II International Meeting on Lorentzian Geometry, Publ. de la RSME 8 (2004), 2-7.

3.
L. J. Alias, R. M. B. Chaves, and P. Mira, Bjoring problem for maximal surfaces in Lorentz-Minkowski space, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 2, 289-316.

4.
V. I. Arnold, Lectures on Partial Differential Equations, Springer, Berlin, 2004.

5.
R. M. B. Chavez, M. P. Dussan, and M. Magid, Bjorling problem for timelike surfaces in the Lorentz-Minkowski space, arXiv:0906.2361.

6.
F. Dillen and W. Kuhnel, Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math. 98 (1999), no. 3, 307-320. crossref(new window)

7.
F. J. M. Estudillo and A. Romero, Generalized maximal surfaces in Lorentz-Minkowski space $L^3$, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 3, 515-524. crossref(new window)

8.
I. Fernandez and F. J. Lopez, Periodic maximal surfaces in the Lorentz-Minkowski space ${\mathbb{L}}^3$, Math. Z. 256 (2007), no. 3, 573-601. crossref(new window)

9.
S. Fujimori, W. Rossman, M. Umehara, K. Yamada, and S.-D. Yang, New maximal surfaces in Minkowski 3-space with arbitrary genus and their cousins in de Sitter 3-space, Results Math. 56 (2009), no. 1-4, 41-82. crossref(new window)

10.
H. Karcher, Construction of Minimal Surfaces, Reports on Global Analysis XIII, Tokyo, 1989.

11.
Y. W. Kim, S.-E. Koh, H. Shin, and S.-D. Yang, Generalized surfaces with constant H/K in Euclidean three-space, Manuscripta Math. 124 (2007), no. 3, 343-361. crossref(new window)

12.
Y. W. Kim and S.-D. Yang, Prescribing singularities of maximal surfaces via a singular Bjolring representation formula, J. Geom. Phys. 57 (2007), no. 11, 2167-2177. crossref(new window)

13.
O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space ${\mathbb{L}}^3$, Tokyo J. Math. 6 (1983), no. 2, 297-309. crossref(new window)

14.
S. Lee, Weierstrass representation for timelike minimal surfaces in Minkowski 3-space, arXiv:math/0608726v2.

15.
T. K. Milnor, Surfaces in Minkowski 3-space on which H and K are linearly related, Michigan Math. J. 30 (1983), no. 3, 309-315. crossref(new window)

16.
P. Mira and J. A. Pastor, Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh. Math. 140 (2003), no. 4, 315-334. crossref(new window)

17.
B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.