JOURNAL BROWSE
Search
Advanced SearchSearch Tips
POSITIVE SOLUTIONS FOR A CLASS OF TELEGRAPH SYSTEM WITH MULTIPARAMETERS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
POSITIVE SOLUTIONS FOR A CLASS OF TELEGRAPH SYSTEM WITH MULTIPARAMETERS
Wang, Fanglei; An, Yukun;
  PDF(new window)
 Abstract
In this paper, we study the existence, non-existence, and multiplicity of positive solutions for a coupled telegraph system using the xed-point theorem of cone expansion/compression type, the upper-lowe solutions method, and xed point index theory.
 Keywords
telegraph system;doubly periodic solution;upper and lower solutions;fixed point theorem;cone;
 Language
English
 Cited by
 References
1.
R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal. 39 (2000), no. 5, 559-568. crossref(new window)

2.
D. R. Dunninger and H. Wang, Multiplicity of positive radial solutions for an elliptic system on an annulus, Nonlinear Anal. 42 (2000), no. 5, 803-811. crossref(new window)

3.
D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.

4.
D. D. Hai, Uniqueness of positive solutions for a class of semilinear elliptic systems, Nonlinear Anal. 52 (2003), no. 2, 595-603. crossref(new window)

5.
W. S. Kim, Multiple doubly periodic solutions of semilinear dissipative hyperbolic equations, J. Math. Anal. Appl. 197 (1996), no. 3, 735-748. crossref(new window)

6.
Y. Lee, Multiplicity of positive radial solutions for multiparameter semilinear elliptic systems on an annulus, J. Differential Equations 174 (2001), no. 2, 420-441. crossref(new window)

7.
Y. Li, Positive doubly periodic solutions of nonlinear telegraph equations, Nonlinear Anal. 55 (2003), no. 3, 245-254. crossref(new window)

8.
Y. Li, Maximum principles and method of upper and lower solutions for time-periodic problems of the telegraph equations, J. Math. Anal. Appl. 327 (2007), no. 2, 997-1009. crossref(new window)

9.
J. M. do O, S. Lorca, J. Sanchez, and P. Ubilla, Positive solutions for a class of multiparameter ordinary elliptic systems, J. Math. Anal. Appl. 332 (2007), no. 2, 1249-1266. crossref(new window)

10.
J. M. do O, S. Lorca, and P. Ubilla, Local superlinearity for elliptic systems involving parameters, J. Differential Equations 211 (2005), no. 1, 1-19. crossref(new window)

11.
J. Mawhin, R. Ortega, and A. M. Robles-Perez, A maximum principle for bounded solutions of the telegraph equations and applications to nonlinear forcings, J. Math. Anal. Appl. 251 (2000), no. 2, 695-709. crossref(new window)

12.
J. Mawhin, R. Ortega, and A. M. Robles-Perez, Maximum principles for bounded solutions of the telegraph equation in space dimensions two or three and applications, J. Differential Equations 208 (2005), no. 1, 42{63. crossref(new window)

13.
R. Ortega and A. M. Robles-Perez, A maximum principle for periodic solutions of the telegraph equations, J. Math. Anal. Appl. 221 (1998), no. 2, 625-651. crossref(new window)

14.
F. Wang and Y. An, Nonnegative doubly periodic solutions for nonlinear telegraph system, J. Math. Anal. Appl. 338 (2008), no. 1, 91-100. crossref(new window)

15.
F. Wang and Y. An, Existence and multiplicity results of positive doubly periodic solutions for nonlinear telegraph system, J. Math. Anal. Appl. 349 (2009), no. 1, 30-42. crossref(new window)

16.
X. Yang, Existence of positive solutions for 2m-order nonlinear differential systems, Nonlinear Anal. 61 (2005), no. 1-2, 77-95. crossref(new window)