JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ENTROPY OF NONAUTONOMOUS DYNAMICAL SYSTEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ENTROPY OF NONAUTONOMOUS DYNAMICAL SYSTEMS
Zhu, Yujun; Liu, Zhaofeng; Xu, Xueli; Zhang, Wenda;
  PDF(new window)
 Abstract
In this paper, the topological entropy and measure-theoretic entropy for nonautonomous dynamical systems are studied. Some properties of these entropies are given and the relation between them is discussed. Moreover, the bounds of them for several particular nonautonomous systems, such as affine transformations on metrizable groups (especially on the torus) and smooth maps on Riemannian manifolds, are obtained.
 Keywords
nonautonomous dynamical system;random dynamical system;topological entropy;measure-theoretic entropy;
 Language
English
 Cited by
1.
On an entropy of ℤ + k -actions, Acta Mathematica Sinica, English Series, 2014, 30, 3, 467  crossref(new windwow)
2.
Metric Entropy of Nonautonomous Dynamical Systems, Nonautonomous Dynamical Systems, 2014, 1, 1  crossref(new windwow)
3.
Topological and Measure-Theoretical Entropies of Nonautonomous Dynamical Systems, Journal of Dynamics and Differential Equations, 2016  crossref(new windwow)
4.
Quasistatic dynamical systems, Ergodic Theory and Dynamical Systems, 2016, 1  crossref(new windwow)
5.
Directional entropy of ℤ+k-actions, Stochastics and Dynamics, 2016, 16, 01, 1650004  crossref(new windwow)
6.
On the topological entropy of free semigroup actions, Journal of Mathematical Analysis and Applications, 2016, 435, 2, 1573  crossref(new windwow)
7.
On the topological entropy of a semigroup of continuous maps, Journal of Mathematical Analysis and Applications, 2015, 427, 2, 1084  crossref(new windwow)
8.
Estimations of topological entropy for non-autonomous discrete systems, Journal of Difference Equations and Applications, 2016, 22, 3, 474  crossref(new windwow)
9.
Topological pressure for nonautonomous systems, Chaos, Solitons & Fractals, 2015, 76, 82  crossref(new windwow)
 References
1.
T. Bogenschutz and H. Crauel, The Abramov-Rokhlin formula, Ergodic theory and related topics, III (Gustrow, 1990), 32-35, Lecture Notes in Math., 1514, Springer, Berlin, 1992.

2.
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.

3.
Y. Kifer and P.-D. Liu, Random dynamical systems, Handbook of Dynamical Systems, vol. 1B, eds, B. Hasselblatt and A. Katok, Elsevier, (2006), 379-499.

4.
S. Kolyada, M. Misiurewicz, and L. Snoha, Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval, Fund. Math. 160 (1999), no. 2, 161-181.

5.
S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996), no. 2-3, 205-223.

6.
P. D. Liu, Dynamics of random transformations: smooth ergodic theory, Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1279-1319.

7.
P. D. Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems, Lect. Notes in Math. 1606, Springer, New York, 1995.

8.
M. Misiurewicz, A short proof of the variational principle for a $Z^N_+$ action on a compact space, International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), pp. 147-157. Asterisque, No. 40, Soc. Math. France, Paris, 1976.

9.
W. Ott, M. Stenlund, and Lai-sang Young, Memory loss for time-dependent dynamical systems, Math. Res. Lett. 16 (2009), no. 3, 463-475. crossref(new window)

10.
P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1982.

11.
J. L. Zhang and L. X. Chen, Lower bounds of the topological entropy for nonautonomou dynamical systems, Appl. Math. J. Chinese Univ. Ser. B 24 (2009), no. 1, 76-82. crossref(new window)

12.
J. L. Zhang, Y. J. Zhu, and L. F. He, Preimage entropy for nonautonomous dynamical systems, Acta Math. Sinica 48 (2005), no. 4, 693-702.

13.
Y. J. Zhu, Growth in topological complexity and volume growth for random dynamical systems, Stoch. Dyn. 6 (2006), no. 4, 459-471. crossref(new window)

14.
Y. J. Zhu, Preimage entropy for random dynamical systems, Discrete Contin. Dyn. Syst. 18 (2007), no. 4, 529-551.

15.
Y. J. Zhu, On local entropy of random transformations, Stoch. Dyn. 8 (2008), no. 2, 197-207. crossref(new window)

16.
Y. J. Zhu, Z. Li, and X. H. Li, Preimage pressure for random transformations, Ergodic Theory Dynam. Systems 29 (2009), no. 5, 1669-1687. crossref(new window)

17.
Y. J. Zhu, J. L. Zhang, and L. F. He, Topological entropy of a sequence of monotone maps on circles, J. Korean Math. Soc. 43 (2006), no. 2, 373-382. crossref(new window)