JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON BOUNDARY REGULARITY OF HOLOMORPHIC CORRESPONDENCES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON BOUNDARY REGULARITY OF HOLOMORPHIC CORRESPONDENCES
Ourimi, Nabil;
  PDF(new window)
 Abstract
Let D be an arbitrary domain in , n > 1, and be an open piece of the boundary. Suppose that M is connected and is smooth real-analytic of finite type (in the sense of D'Angelo) in a neighborhood of . Let f : be a holomorphic correspondence such that the cluster set (M) is contained in a smooth closed real-algebraic hypersurface M' in of finite type. It is shown that if f extends continuously to some open peace of M, then f extends as a holomorphic correspondence across M. As an application, we prove that any proper holomorphic correspondence from a bounded domain D in with smooth real-analytic boundary onto a bounded domain D' in with smooth real-algebraic boundary extends as a holomorphic correspondence to a neighborhood of .
 Keywords
analytic sets;holomorphic correspondences;Segre varieties;
 Language
English
 Cited by
 References
1.
B. Ayed and N. Ourimi, Analytic continuation of holomorphic mappings, C. R. Math. Acad. Sci. Paris 347 (2009), no. 17-18, 1011-1016. crossref(new window)

2.
B. Ayed and N. Ourimi, A Local extension of proper holomorphic maps between some unbounded domains in $C^{n}$, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 3, 513-534.

3.
M. S. Baouendi and L. P. Rotshschild, Germs of CR maps between real analytic hyper-surfaces, Invent. Math. 93 (1998), no. 3, 481-500.

4.
M. S. Baouendi and L. P. Rotshschild, Images of real hypersurfaces under holomorphic mappings, J. Differential Geom. 36 (1992), no. 1, 75-88.

5.
F. Berteloot and A. Sukhov, On the continuous extension of holomorphic correspon-dences, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), no. 4, 747-766.

6.
E. M. Chirka, Complex Analytic Sets, Kluwer Academic Publishers, 1989.

7.
S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. crossref(new window)

8.
K. Diederich and J. E. Fornaess, Proper holomorphic mappings between real-analytic pseudoconvex domains in $C^n$, Math. Ann. 282 (1988), no. 4, 681-700. crossref(new window)

9.
K. Diederich and S. Pinchuk, Analytic sets extending the graphs of holomorphic mappings, J. Geom. Anal. 14 (2004), no. 2, 231-239. crossref(new window)

10.
K. Diederich and S. Pinchuk, Proper holomorphic maps in dimension 2 extend, Indiana Univ. Math. J. 44 (1995), no. 4, 1089-1126.

11.
K. Diederich and S. Pinchuk, Regularity of continuous CR maps in arbitrary dimension, Mich. Math. J. 51 (2003), no. 1, 111-140. crossref(new window)

12.
K. Diederich and J. Fornaess, Proper holomphic mapping between real-analytic pseudo- convex domains in , Math. Ann. 282 (1988), no. 4, 681-700. crossref(new window)

13.
K. Diederich and S. Webster, A reflection principle for degenerate real hypersurfaces, Duke Math. J. 47 (1980), no. 4, 835-845. crossref(new window)

14.
J. Merker and E. Porten, On wedge extendability of CR-meromorphic functions, Math. Z. 241 (2002), no. 3, 485-512. crossref(new window)

15.
S. Pinchuk, On holomorphic maps of real-analytic hypersurfaces, Math. USSR Sb. 34 (1978), 503-519. crossref(new window)

16.
S. Pinchuk, Analytic continuation of holomorphic mappings and the problem of holomorphic classification of multidimensional domains, Doctoral dissertation (habilitation), Moscow State Univ., 1980.

17.
S. Pinchuk and K. Verma, Analytic sets and the boundary regularity of CR mappings, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2623-2632. crossref(new window)

18.
R. Shafikov, Analytic continuation of germs of holomorphic mappings, Mich. Math. J. 47 (2000), no. 1, 133-149. crossref(new window)

19.
R. Shafikov, Analytic continuation of holomorphic correspondences and equivalence of domains in $C^n$, Invent. Math. 152 (2003), no. 3, 665-682. crossref(new window)

20.
R. Shafikov, On boundary regularity of proper holomorphic mappings, Math. Z. 242 (2002), no. 3, 517-528. crossref(new window)

21.
R. Shafikov and K. Verma, A local extension theorem for proper holomorphic mappings in $C^2$, J. Geom. Anal. 13 (2003), no. 4, 697-714. crossref(new window)

22.
R. Shafikov and K. Verma, Extension of holomorphic maps between real hypersurfaces of different dimension, Ann. Inst. Fourier, Grenoble 57 (2007), no. 6, 2063-2080. crossref(new window)

23.
R. Shafikov and K. Verma, Boundary regularity of correspondences in $C^n$, Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006), no. 1, 59-70. crossref(new window)

24.
K. Verma, Boundary regularity of correspondences in $C^2$, Math. Z. 231 (1999), no. 2, 253-299. crossref(new window)

25.
S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math 43 (1977), no. 1, 53-68. crossref(new window)