STRONG CONVERGENCE OF AN EXTENDED EXTRAGRADIENT METHOD FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

- Journal title : Journal of the Korean Mathematical Society
- Volume 49, Issue 1, 2012, pp.187-200
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2012.49.1.187

Title & Authors

STRONG CONVERGENCE OF AN EXTENDED EXTRAGRADIENT METHOD FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

Kim, Jong-Kyu; Anh, Pham Ngoc; Nam, Young-Man;

Kim, Jong-Kyu; Anh, Pham Ngoc; Nam, Young-Man;

Abstract

In this paper, we introduced a new extended extragradient iteration algorithm for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of equilibrium problems for a monotone and Lipschitz-type continuous mapping. And we show that the iterative sequences generated by this algorithm converge strongly to the common element in a real Hilbert space.

Keywords

equilibrium problems;monotone mapping;Lipschitz-type continuous;strong convergence;extragradient algorithm;nonexpansive mapping;

Language

English

Cited by

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

References

1.

P. N. Anh, A logarithmic quadratic regularization method for solving pseudomonotone equilibrium problems, Acta Mathematica Vietnamica 34 (2009), 183-200.

2.

P. N. Anh, An LQP regularization method for equilibrium problems on polyhedral, Vietnam Journal of Mathematics 36 (2008), 209-228.

3.

P. N. Anh, L. D. Muu, V. H. Nguyen, and J. J. Strodiot, Using the Banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities, J. Optim. Theory Appl. 124 (2005), no. 2, 285-306.

4.

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.

5.

P. Daniele, F. Giannessi, and A. Maugeri, Equilibrium Problems and Variational Models, Kluwer, 2003.

6.

J. K. Kim, S. Y. Cho, and X. Qin, Hybrid projection algorithms for generalized equilibrium problems and strictly pseudocontractive mappings, J. Inequal. Appl. 2010 (2010), Art. ID 312602, 18 pp.

7.

J. K. Kim, S. Y. Cho, and X. Qin, Some results on generalized equilibrium problems involving strictly pseudocontractive mappings, Acta Math. Scientia 31(5) (2011), 2041-2057.

8.

J. K. Kim and N. Buong, Regularization inertial proximal point algorithm for monotone hemicontinuous mapping and inverse strongly monotone mappings in Hilbert spaces, J. Inequal. Appl. 2010 (2010), Art. ID 451916, 10 pp.

9.

G. M. Korpelevich, An extragradient method for nding saddle points and for other problems, Ekonom. i Mat. Metody 12 (1976), no. 4, 747-756.

10.

P. Kumama, N. Petrot, and R. Wangkeeree, A hybrid iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudo-contractions, J. Comput. Appl. Math. 233 (2010), no. 8, 2013-2026.

11.

G. Li and J. K. Kim, Demiclosedness principle and asymptotic behavior for nonexpan- sive mappings in metric spaces, Appl. Math. Lett. 14 (2001), no. 5, 645-649.

12.

N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006), no. 1, 191-201.

13.

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mapping, Bull. Amer. Math. Soc. 73 (1967), 591-597.

14.

J. W. Peng, Iterative algorithms for mixed equilibrium problems, strict pseudocontractions and monotone mappings, J. Optim. Theory Appl. 144 (2010), no. 1, 107-119.

15.

Y. Shehu, Fixed point solutions of generalized equilibrium problems for nonexpansive mappings, J. Comput. Appl. Math. 234 (2010), no. 3, 892-898.

16.

S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no.1, 506-515.

17.

W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428.

18.

S. Wang and B. Guo, New iterative scheme with nonexpansive mappings for equilibrium problems and variational inequality problems in Hilbert spaces, J. Comput. Appl. Math. 233 (2010), no. 10, 2620-2630.

19.

H. K. Xu, Viscosity method for hierarchical fixed point approach to variational inequalities, Taiwanese J. Math. 14 (2010), no. 2, 463-478.

20.

H. K. Xu and T. H. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory Appl. 119 (2003), no. 1, 185-201.

21.

Y. Yao, Y. C. Liou, and Y. J. Wu, An extragradient method for mixed equilibrium problems and fixed point problems, Fixed Point Theory Appl. 2009 (2009), Art. ID 632819, 15 pp.

22.

L. C. Zeng and J. C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math. 10 (2006), no. 5, 1293-1303.