JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ℓ-RANKS OF CLASS GROUPS OF FUNCTION FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ℓ-RANKS OF CLASS GROUPS OF FUNCTION FIELDS
Bae, Sung-Han; Jung, Hwan-Yup;
  PDF(new window)
 Abstract
In this paper we give asymptotic formulas for the number of -cyclic extensions of the rational function field with prescribe -class numbers inside some cyclotomic function fields, and density results for -cyclic extensions of k with certain properties on the ideal class groups.
 Keywords
class groups;function fields;
 Language
English
 Cited by
1.
DENSITIES FOR 4-RANKS OF REAL QUADRATIC FUNCTION FIELDS,;

충청수학회지, 2014. vol.27. 4, pp.553-562 crossref(new window)
1.
DENSITIES FOR 4-RANKS OF REAL QUADRATIC FUNCTION FIELDS, Journal of the Chungcheong Mathematical Society, 2014, 27, 4, 553  crossref(new windwow)
 References
1.
B. Angles, On Hilbert class field towers of global function fields, Drinfeld modules, modular schemes and applications (Alden-Biesen, 1996), 261-271, World Sci. Publ., River Edge, NJ, 1997.

2.
S. Bae and J. Koo, Genus theory for function fields, J. Austral. Math. Soc. Ser. A 60 (1996), no. 3, 301-310. crossref(new window)

3.
A. Frohlich, Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields, American Mathematical Society, Providence, RI, 1983.

4.
F. Gerth, Number fields with prescribed $\ell$-class groups, Proc. Amer. Math. Soc. 49 (1975), 284-288.

5.
F. Gerth, Asymptotic behavior of number fields with prescribed $\ell$-class numbers, J. Number Theory 17 (1983), no. 2, 191-203. crossref(new window)

6.
F. Gerth, Counting certain number fields with prescribed $\ell$-class numbers, J. Reine Angew. Math. 337 (1982), 195-207.

7.
F. Gerth, An application of matrices over finite fields to algebraic number theory, Math. Comp. 41 (1983), no. 163, 229-234. crossref(new window)

8.
F. Gerth, The 4-class ranks of quadratic fields, Invent. Math. 77 (1984), no. 3, 489-515. crossref(new window)

9.
F. Gerth, Densities for certain $\ell$-ranks in cyclic fields of degree ${\ell}^n$, Compositio Math. 60 (1986), no. 3, 295-322.

10.
F. Gerth, Densities for ranks of certain parts of p-class groups, Proc. Amer. Math. Soc. 99 (1987), no. 1, 1-8.

11.
J. Knopfmacher, Analytic Arithmetic of Algebraic Function Fields, Marcel Decker Inc., New York-Basel, 1979.

12.
M. Rosen, Number Theory in Function Fields, GTM vol. 210, Springer, 2002.

13.
C. Wittmann, $\ell$-Class groups of cyclic function fields of degree $\ell$, Finite Fields Appl. 13 (2007), no. 2, 327-347. crossref(new window)