JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXPLICIT FORMULAS FOR THE BERGMAN KERNEL ON CERTAIN FORELLI-RUDIN CONSTRUCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXPLICIT FORMULAS FOR THE BERGMAN KERNEL ON CERTAIN FORELLI-RUDIN CONSTRUCTION
Zhang, Liyou; Wang, An; Li, Qingbin;
  PDF(new window)
 Abstract
In this note, we present certain circular domain, named Forelli-Rudin construction or Hua construction, which is built on Cartan domains. We compute the explicit Bergman kernel for it and get the corresponding weighted Bergman kernel on its base.
 Keywords
Bergman kernel;weighted Bergman kernel;Forelli-Rudin construction;Hua construction;
 Language
English
 Cited by
 References
1.
S. Bergman, Uber die Entwickling der harmonischen Funktionen der Ebene und Raumes nach Orthogonal funktionen, Math. Ann. 96 (1922), 237.

2.
S. Bergman, Uber die kernfunktion eines Bereiches und ihre Verhalten am Rande, J. Reine Angew. Math. 169 (1933), 1

3.
S. Bergman, Uber die kernfunktion eines Bereiches und ihre Verhalten am Rande, J. Reine Angew. Math. 172 (1935), 89.

4.
S. Bergman, Zur theorie Von pseudokonformen abbildungen, Mat. sb (N.S) 1 (1963), no. 1, 79-96.

5.
H. P. Boas, Lu Qi-Keng's problem, J. Korean Math. Soc. 37 (2000), no. 2, 253-267.

6.
H. P. Boas, S. Q. Fu, and E. J. Straube, The Bergman kernel function: Explicit formulas and zeroes, Proc. Amer. Math. Soc. 127 (1999), no. 3, 805-811. crossref(new window)

7.
J. P. D'Angelo, A note on the Bergman kernel, Duke Math. J. 45 (1978), no. 2, 259-265. crossref(new window)

8.
J. P. D'Angelo, An explicit computation of the Bergman kernel function, J. Geom. Anal. 4 (1994), no. 1, 23-34. crossref(new window)

9.
A. Edigarian and W. Zwonek, Geometry of the symmetrized polydisc, Arch. Math. (Basel) 84 (2005), no. 4, 364-374. crossref(new window)

10.
M. Englis, A Forelli-Rudin construction and asymptotics of weighted Bergman kernels, J. Funct. Anal. 177 (2000), no. 2, 257-281. crossref(new window)

11.
M. Englis and G. K. Zhang, On a generalized Forelli-Rudin construction, Complex Var. Elliptic Equ. 51 (2006), no. 3, 277-294. crossref(new window)

12.
F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602. crossref(new window)

13.
G. Francsics and N. Hanges, The Bergman kernel and hypergeometric functions, J. Funct. Anal. 142 (1996), no. 2, 494-510. crossref(new window)

14.
L. G. Hua, Harmonic Analysis of Function of several Complex Variables in Classical Domains, Beijing, Science Press, 1959.

15.
E. Ligocka, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math. 94 (1989), no. 3, 257-272.

16.
Q. K. Lu, The Classical Manifolds and Classical Domains, Shanghai: Shanghai Scientific and Technical Publisher, 1963.

17.
K. Oeljeklaus, P. P ug, and E.H. Youssfi, The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 3, 915-928. crossref(new window)

18.
J. D. Park, New formulas of the Bergman kernel for complex ellipsoids in $C^2$, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4211-4221. crossref(new window)

19.
G. Roos, Weighted Bergman kernels and virtual Bergman kernels, Sci. China Ser. A 48 (2005), suppl., 387-399.

20.
A. Wang, W. P. Yin, L. Y. Zhang, and G. Roos, The Kahler-Einstein metric for some Hartogs domains over bounded symmetric domains, Sci. China Ser. A 49 (2006), no. 9, 1175-1210. crossref(new window)

21.
W. P. Yin, The Bergman Kernels on Cartan-Hartogs domains, Chinese Sci. Bull. 44 (1999), no. 21, 1947-1951. crossref(new window)

22.
W. P. Yin, The Bergman kernels on super-Cartan domains of the first type, Sci. China Ser. A 43 (2000), no. 1, 13-21. crossref(new window)

23.
L. Y. Zhang and W. P. Yin, Lu Qi-Kengs problem on some complex ellipsoids, J. Math. Anal. Appl. 357 (2009), no. 2, 364-370. crossref(new window)