JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A BORSUK-ULAM TYPE THEOREM OVER ITERATED SUSPENSIONS OF REAL PROJECTIVE SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A BORSUK-ULAM TYPE THEOREM OVER ITERATED SUSPENSIONS OF REAL PROJECTIVE SPACES
Tanaka, Ryuichi;
  PDF(new window)
 Abstract
A CW complex B is said to be I-trivial if there does not exist a -map from to S() for any vector bundle over B a any integer i with i > dim . In this paper, we consider the question of determining whether is I-trivial or not, and to this question we give complete answers when k 1, 3, 8 and partial answers when k
 Keywords
sphere bundle;-map;index;
 Language
English
 Cited by
 References
1.
P. E. Conner and E. E. Floyd, Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960), 416-441. crossref(new window)

2.
P. E. Conner and E. E. Floyd, Fixed point free involutions and equivariant maps II, Trans. Amer. Math. Soc. 105 (1962), 222-228. crossref(new window)

3.
M. Fujii, KO-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.

4.
F. Hirzebruch, Neue Topologische Methoden in der Algebraischen Geometrie, Ergebnisse der Math., Springer, 1956.

5.
J. Milnor, Some consequences of a theorem of Bott, Ann. of Math. (2) 68 (1958), 444-449. crossref(new window)

6.
R. Tanaka, On the index and co-index of sphere bundles, Kyushu J. Math. 57 (2003), no. 2, 371-382. crossref(new window)

7.
R. Tanaka, A stability theorem for the index of sphere bundles, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 177-182.

8.
R. Tanaka, A berwise analogue of the Borsuk-Ulam theorem for sphere bundles over a 2-cell complex, Topology Appl. 154 (2007), no. 8, 1827-1833. crossref(new window)

9.
R. Tanaka, A Borsuk-Ulam type theorem for sphere bundles over stunted projective spaces, Topology Appl. 156 (2009), no. 5, 932-938. crossref(new window)

10.
R. Tanaka, On trivialities of Stiefel-Whitney classes of vector bundles over iterated suspension spaces, Homology, Homotopy Appl. 12 (2010), no. 1, 357-366. crossref(new window)

11.
W.-T. Wu, Les i-carres dans une variete grassmannienne, C. R. Acad. Sci. Paris 230 (1950), 918-920.