JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE CHIRAL SUPERSTRING SIEGEL FORM IN DEGREE TWO IS A LIFT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE CHIRAL SUPERSTRING SIEGEL FORM IN DEGREE TWO IS A LIFT
Poor, Cris; Yuen, David S.;
  PDF(new window)
 Abstract
We prove that the Siegel modular form of D`Hoker and Phong that gives the chiral superstring measure in degree two is a lift. This gives a fast algorithm for computing its Fourier coefficients. We prove a general lifting from Jacobi cusp forms of half integral index t/2 over the theta group (1, 2) to Siegel modular cusp forms over certain subgroups (t; 1, 2) of paramodular groups. The theta group lift given here is a modification of the Gritsenko lift.
 Keywords
Siegel modular form;Jacobi form;chiral superstring measure;
 Language
English
 Cited by
 References
1.
A. Andrianov, Quadratic Forms and Hecke Operators, Die Grund. der Math. Wissenschaften, Band 286, Springer: New York Berlin Heidelberg, 1987.

2.
S. L. Cacciatori, F. Dalla Piazza, and B. van Geemen, Modular forms and three loop superstring amplitudes, Nuclear Phys. B 800 (2008), no. 3, 565-590. crossref(new window)

3.
F. Clery, Relevement Arithmetique et Multiplicatif de Formes de Jacobi, These, l'Universite Lille 1, 2009.

4.
O. Delzeith, Paramodulmannigfaltigkeiten von allgemeinem Typ, Inaugural Dissertation der Ruprecht-Karls-Universitaet Heidelberg, 1995.

5.
E. D'Hoker and D. H. Phong, Two-loop superstrings IV, The cosmological constant and modular forms, Nuclear Phys. B 639 (2002), no. 1-2, 129-181. crossref(new window)

6.
M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, Vol. 55, Birkhauser Verlag, 1985.

7.
G. Faltings and C. Chai, Degeneration of Abelian Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 22, (3.Folge) Berlin-Heidelberg: Springer-Verlag, 1990.

8.
E. Freitag, Siegelsche Modulfunktionen, Grundlehren der mathematischen Wissen-schaften, Band 254, Berlin-Heidelberg-New York: Springer-Verlag, 1983.

9.
V. Gritsenko, Arithmetical lifting and its applications, Number theory (Paris, 1992-1993), 103-126, London Math. Soc. Lecture Note Ser., 215, Cambridge Univ. Press, Cambridge, 1995.

10.
V. Gritsenko, Irrationality of the moduli spaces of polarized abelian surfaces, Internat. Math. Res. Notices 1994 (1994), no. 6, 235-243. crossref(new window)

11.
S. Grushevsky, Superstring scattering amplitudes in higher genus, Comm. Math. Phys. 287 (2009), no. 2, 749-767. crossref(new window)

12.
S. Grushevsky and R. Salvati Manni, The superstring cosmological constant and the Schottky form in genus 5, Amer. J. Math. 133 (2011), no. 4, 1007-1027. crossref(new window)

13.
T. Ichikawa, On Teichmuller modular forms, Math. Ann. 299 (1994), no. 4, 731-740. crossref(new window)

14.
J.-I. Igusa, Modular forms and projective invariants, Amer. J. Math. 89 (1967), 817-855. crossref(new window)

15.
J.-I. Igusa, Theta Functions, Die Grundlehren der mathematischen Wissenschaften, Band 194, Springer-Verlag, New York-Heidelberg, 1972.

16.
A. Morozov, NSR superstring measures revisited, J. High Energy Phys. 2008 (2008), no. 5, 086, 27 pp.

17.
D. Mumford, Tata Lectures on Theta II, Progress in Mathematics 43, Birkhauser, Boston, 1984.

18.
M. Oura, C. Poor, R. Salvati Manni, and D. Yuen, Modular forms of weight 8 for ${\tau}_{g}$(1 2), Math. Ann. 346 (2010), no. 2, 477-498. crossref(new window)

19.
C. Poor and D. Yuen, Binary forms and the hyperelliptic superstring Ansatz, (to appear) Math. Ann.

20.
C. Poor and D. Yuen, Paramodular cusp forms, (preprint), arXiv:0912.0049.