JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE EXISTENCE OF GLOBAL ATTRACTOR FOR CONVECTIVE CAHN-HILLIARD EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE EXISTENCE OF GLOBAL ATTRACTOR FOR CONVECTIVE CAHN-HILLIARD EQUATION
Zhao, Xiaopeng; Liu, Bo;
  PDF(new window)
 Abstract
In this paper, we consider the convective Cahn-Hilliard equation. Based on the regularity estimates for the semigroups, iteration technique and the classical existence theorem of global attractors, we prove that the convective Cahn-Hilliard equation possesses a global attractor in () space, which attracts any bounded subset of in the -norm.
 Keywords
attractor;convective Cahn-Hilliard equation;absorbing set;
 Language
English
 Cited by
1.
GLOBAL ATTRACTOR FOR COUPLED TWO-COMPARTMENT GRAY-SCOTT EQUATIONS,;;

대한수학회보, 2013. vol.50. 1, pp.143-159 crossref(new window)
2.
SPECTRAL APPROXIMATIONS OF ATTRACTORS FOR CONVECTIVE CAHN-HILLIARD EQUATION IN TWO DIMENSIONS,;

대한수학회보, 2015. vol.52. 5, pp.1445-1465 crossref(new window)
1.
The convective viscous Cahn–Hilliard equation: Exact solutions, European Journal of Applied Mathematics, 2016, 27, 01, 42  crossref(new windwow)
2.
GLOBAL ATTRACTOR FOR COUPLED TWO-COMPARTMENT GRAY-SCOTT EQUATIONS, Bulletin of the Korean Mathematical Society, 2013, 50, 1, 143  crossref(new windwow)
3.
Solutions for a fourth-order nonlinear parabolic equation describing Marangoni convection, Applicable Analysis, 2016, 95, 9, 2081  crossref(new windwow)
4.
Fourier Spectral Approximation to Global Attractor for 2D Convective Cahn–Hilliard Equation, Bulletin of the Malaysian Mathematical Sciences Society, 2016  crossref(new windwow)
5.
Optimal Control for the Convective Cahn–Hilliard Equation in 2D Case, Applied Mathematics & Optimization, 2014, 70, 1, 61  crossref(new windwow)
6.
SPECTRAL APPROXIMATIONS OF ATTRACTORS FOR CONVECTIVE CAHN-HILLIARD EQUATION IN TWO DIMENSIONS, Bulletin of the Korean Mathematical Society, 2015, 52, 5, 1445  crossref(new windwow)
 References
1.
J. W. Cholewa and T. Dlotko, Global attractor for the Cahn-Hilliard system, Bull. Austral. Math. Soc. 49 (1994), no. 2, 277-292. crossref(new window)

2.
T. Dlotko, Global attractor for the Cahn-Hilliard equation in $H^{2}$ and $H^{3}$, J. Differential Equations 113 (1994), no. 2, 381-393. crossref(new window)

3.
A. Eden and V. K. Kalantarov, The convective Cahn-Hilliard equation, Appl. Math. Lett. 20 (2007), no. 4, 455-461. crossref(new window)

4.
A. Eden and V. K. Kalantarov, 3D convective Cahn-Hilliard equation, Commun. Pure Appl. Anal. 6 (2007), no. 4, 1075-1086. crossref(new window)

5.
A. A. Golovin, S. H. Davism, and A. A. Nepomnyashchy, A convective Cahn-Hilliard model for the formation of facets and corners in crystal growth, Phys. D 122 (1998), no. 1-4, 202-230. crossref(new window)

6.
K. H. Kwek, On the Cahn-Hilliard type equation, Ph. D. thesis, Georgia Institute of Technology, 1991.

7.
D. Li and C. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Differential Equations 149 (1998), no. 2, 191-210. crossref(new window)

8.
C. Liu, On the convective Cahn-Hilliard equation, Bull. Pol. Acad. Sci. Math. 53 (2005), no. 3, 299-314. crossref(new window)

9.
C. Liu, On the convective Cahn-Hillirad equation with degenerate mobility, J. Math. Anal. Appl. 344 (2008), no. 1, 124-144. crossref(new window)

10.
T. Ma and S. H. Wang, Stability and Bifurcation of Nonlinear Evolution Equations, Science Press, Beijing, 2006.

11.
A. Pazy, Semigroups of linear operators and applications to partial differential equations, in: Appl. Math. Sci., vol. 44, Springer-Verlag, 1983.

12.
A. Podolny, M. A. Zaks, B. Y. Rubinstein, A. A. Golovin, and A. A. Nepomnyashchy, Dynamics of domain walls governed by the convective Cahn-Hilliard equation, Phys. D 201 (2005), no. 3-4, 291-305. crossref(new window)

13.
L. Song, Y. He, and Y. Zhang, The existence of global attractors for semilinear parabolic equation in $H^{k}$ space, Nonlinear Anal. 68 (2008), no. 11, 3541-3549. crossref(new window)

14.
L. Song, Y. Zhang, and T. Ma, Global attractor of the Cahn-Hilliard equation in $H^{k}$ spaces, J. Math. Anal. Appl. 355 (2009), no. 1, 53-62. crossref(new window)

15.
L. Song, Y. Zhang, and T. Ma, Global attractor of a modied Swift-Hohenberg equation in $H^{k}$ space, Nonlinear Anal. 72 (2010), no. 1, 183-191. crossref(new window)

16.
R. Temam, Innite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.

17.
S. J. Watson, F. Otto, B. Y. Rubinstein, and S. H. Davis, Coarsening dynamics of the convective Cahn-Hilliard equations, Phys. D 178 (2003), no. 3-4, 127-148. crossref(new window)

18.
H. Wu and S. M. Zheng, Global attractor for the 1-D thin lm equation, Asymptot. Anal. 51 (2007), no. 2, 101-111.

19.
M. A. Zarks, A. Podolny, A. A. Nepomnyashchy, and A. A. Golovin, Periodic stationary patterns governed by a convective Cahn-Hilliard equation, SIAM J. Appl. Math. 66 (2005), no. 2, 700-720. crossref(new window)

20.
X. Zhao and C. Liu, Global attractor for the convective Cahn-Hilliard equation, Bull. Pol. Acad. Sci. Math. 58 (2010), no. 2, 117-127. crossref(new window)