JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HOLOMORPHIC FUNCTIONS ON ALMOST COMPLEX MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HOLOMORPHIC FUNCTIONS ON ALMOST COMPLEX MANIFOLDS
Han, Chong-Kyu; Kim, Hye-Seon;
  PDF(new window)
 Abstract
Given an almost complex structure (, J), , that is defined by setting , ,m, to be (1, 0)-forms, we find conditions on () for the existence of holomorphic functions an classify the almost complex structures by type (,q). Then we determine types for several examples in and including the natural almost complex structure on .
 Keywords
almost complex manifolds;J-holomorphic functions;Nijenhuis tensor;Newlander-Nirenberg theorem;
 Language
English
 Cited by
1.
Partial integrability of almost complex structures and the existence of solutions for quasilinear Cauchy–Riemann equations, Pacific Journal of Mathematics, 2013, 265, 1, 59  crossref(new windwow)
2.
Invariant submanifolds for systems of vector fields of constant rank, Science China Mathematics, 2016, 59, 7, 1417  crossref(new windwow)
 References
1.
H. Ahn and C. K. Han, Local geometry of Levi-forms associated with the existence of complex manifolds and the minimality of generic CR manifolds, J. Geom. Anal., to appear.

2.
S. Berhanu, P. Cordaro, and J. Hounie, An Introduction to Involutive Structures, Cambridge U. Press, 2008.

3.
R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths, Exterior Differential Systems, Springer-Verlag, New York, 1991.

4.
E. Cartan, Les systemes differentiels exterieurs et leurs applications geometriques, Herman, Paris, 1945.

5.
R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II, John Wiley and Sons, New York, 1962.

6.
A. Frolicher, Zur Differentialgeometrie der komplexen Strukturen, Math. Ann. 129 (1955), 50-95. crossref(new window)

7.
T. Fukami and S. Ishihara, Almost Hermitian structure on $S^{6}$, Tohoku Math. J. (2) 7 (1955), 151-156.

8.
R. B. Gardner, Invariants of Pfaffian systems, Trans. Amer. Math. Soc. 126 (1967), 514-533. crossref(new window)

9.
C. K. Han and K. H. Lee, Integrable submanifolds in almost complex manifolds, J. Geom. Anal. 20 (2010), no. 1, 177-192. crossref(new window)

10.
H. Kim and K. H. Lee, Complete prolongation for innitesimal automorphisms on almost complex manifolds, Math. Z. 264 (2010), no. 4, 913-925. crossref(new window)

11.
B. S. Krugilov, Nijenhuis tensors and obstructions to constructing pseudoholomorphic mappings, Mathematical Notes 63 (1998), 476-493. crossref(new window)

12.
O. Muskarov, Almost complex manifolds without almost holomorphic functions, C. R. Acad. Bulgare Sci. 34 (1981), no. 9, 1225-1228.

13.
O. Muskarov, Existence of holomorphic functions on almost complex manifolds, Math. Z. 192 (1986), no. 2, 283-295. crossref(new window)

14.
A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957), 391-404. crossref(new window)

15.
F. Treves, Approximation and representation of functions and distributions annihilated by a system of complex vector fields, Ecole Polytechnique, Centre de Mathematiques, Palaiseau, 1981.