JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE MINIMAL FREE RESOLUTION OF A STAR-CONFIGURATION IN ?n AND THE WEAK LEFSCHETZ PROPERTY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE MINIMAL FREE RESOLUTION OF A STAR-CONFIGURATION IN ?n AND THE WEAK LEFSCHETZ PROPERTY
Ahn, Jea-Man; Shin, Yong-Su;
  PDF(new window)
 Abstract
We find the Hilbert function and the minimal free resolution of a star-configuration in . The conditions are provided under which the Hilbert function of a star-configuration in is generic or non-generic We also prove that if and are linear star-configurations in of types t and s, respectively, with , then the Artinian k-algebra has the weak Lefschetz property.
 Keywords
Hilbert functions;Artinian algebras;minimal free resolutions;weak Lefschetz property;star-configurations;
 Language
English
 Cited by
1.
SOME APPLICATIONS OF THE UNION OF STAR-CONFIGURATIONS IN $\mathbb{P}^n$,;

충청수학회지, 2011. vol.24. 4, pp.807-824
2.
SOME EXAMPLES OF THE UNION OF TWO LINEAR STAR-CONFIGURATIONS IN ℙ2 HAVING GENERIC HILBERT FUNCTION,;

충청수학회지, 2013. vol.26. 2, pp.403-409 crossref(new window)
3.
SECANT VARIETIES TO THE VARIETY OF REDUCIBLE FORMS,;

충청수학회지, 2014. vol.27. 1, pp.39-46 crossref(new window)
4.
A POINT STAR-CONFIGURATION IN ℙn HAVING GENERIC HILBERT FUNCTION,;

충청수학회지, 2015. vol.28. 1, pp.119-125 crossref(new window)
1.
Star-Configurations in ℙ2Having Generic Hilbert Function and the Weak Lefschetz Property, Communications in Algebra, 2012, 40, 6, 2226  crossref(new windwow)
2.
SOME EXAMPLES OF THE UNION OF TWO LINEAR STAR-CONFIGURATIONS IN ℙ2HAVING GENERIC HILBERT FUNCTION, Journal of the Chungcheng Mathematical Society, 2013, 26, 2, 403  crossref(new windwow)
3.
The minimal free graded resolution of a star-configuration in Pn, Journal of Pure and Applied Algebra, 2015, 219, 6, 2124  crossref(new windwow)
4.
An Artinian Quotient of the Coordinate Ring of a Complete Intersection in ℙnHaving the Weak Lefschetz Property, Communications in Algebra, 2014, 42, 9, 4002  crossref(new windwow)
5.
A POINT STAR-CONFIGURATION IN ℙn HAVING GENERIC HILBERT FUNCTION, Journal of the Chungcheong Mathematical Society, 2015, 28, 1, 119  crossref(new windwow)
6.
The Minimal Free Resolution of a Fat Star-Configuration in ℙn, Algebra Colloquium, 2014, 21, 01, 157  crossref(new windwow)
7.
Tower sets and other configurations with the Cohen–Macaulay property, Journal of Pure and Applied Algebra, 2015, 219, 6, 2260  crossref(new windwow)
8.
The secant line variety to the varieties of reducible plane curves, Annali di Matematica Pura ed Applicata (1923 -), 2016, 195, 2, 423  crossref(new windwow)
9.
Star configurations on generic hypersurfaces, Journal of Algebra, 2014, 407, 1  crossref(new windwow)
10.
Star-Configurations in ℙnand the Weak-Lefschetz Property, Communications in Algebra, 2016, 44, 9, 3853  crossref(new windwow)
11.
SECANT VARIETIES TO THE VARIETY OF REDUCIBLE FORMS, Journal of the Chungcheong Mathematical Society, 2014, 27, 1, 39  crossref(new windwow)
12.
Plane curves containing a star configuration, Journal of Pure and Applied Algebra, 2015, 219, 8, 3495  crossref(new windwow)
 References
1.
H. Abo, G. Ottaviani, and C. Peterson, Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc. 361 (2009), no. 2, 767-792. crossref(new window)

2.
J. Ahn, A. V. Geramita, and Y. S. Shin, Points set in $P^{2}$ associated to varieties of reducible curves, Preprint.

3.
J. Ahn and Y. S. Shin, Generic initial ideals and graded Artinian-level algebras not having the weak-Lefschetz property, J. Pure Appl. Algebra 210 (2007), no. 3, 855-879. crossref(new window)

4.
J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201-222.

5.
E. Arrondo and A. Bernardi, On the variety parametrizing completely decomposable polynomials, Preprint. crossref(new window)

6.
M. Boij and F. Zanello, Some algebraic consequences of Green's hyperplane restriction theorems, J. Pure Appl. Algebra 214 (2010), no. 7, 1263-1270. crossref(new window)

7.
W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge studies in Advances Mathematics, Cambridge University Press, 1998.

8.
E. Carlini, L. Chiantini, and A. V. Geramita, Complete intersection points on general surfaces in $P^{3}$, Michigan Math. J. 59 (2010), no. 2, 269-281. crossref(new window)

9.
M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Secant varieties of Grassmann varieties, Proc. Amer. Math. Soc. 133 (2005), no. 3, 633-642. crossref(new window)

10.
M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Secant varieties of $P^{1}{\times}{\cdot}{\cdot}{\cdot}{\times}P^{1}$ (n-times) are not defective for n ${\geq}$ 5, J. Algebraic Geom. 20 (2011), no. 2, 295-327. crossref(new window)

11.
D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995

12.
A. V. Geramita, T. Harima, J. C. Migliore, and Y. S. Shin, The Hilbert function of a level algebra, Mem. Amer. Math. Soc. 186 (2007), no. 872, vi+139 pp.

13.
A. V. Geramita, T. Harima, and Y. S. Shin, An alternative to the Hilbert function for the ideal of a nite set of points in $P^{n}$, Illinois J. Math. 45 (2001), no. 1, 1-23.

14.
A. V. Geramita, T. Harima, and Y. S. Shin, Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119. crossref(new window)

15.
A. V. Geramita, T. Harima, and Y. S. Shin, Decompositions of the Hilbert function of a set of points in $P^{n}$, Canad. J. Math. 53 (2001), no. 5, 923-943. crossref(new window)

16.
A. V. Geramita, T. Harima, and Y. S. Shin, some special congurations of points in $P^{n}$, J. Algebra 268 (2003), no. 2, 484-518. crossref(new window)

17.
A. V. Geramita, H. J. Ko, and Y. S. Shin, The Hilbert function and the minimal free resolution of some Gorenstein ideals of codimension 4, Comm. Algebra. 26 (1998), no. 12, 4285-4307. crossref(new window)

18.
A. V. Geramita, J. C. Migliore, and S. Sabourin, On the rst innitesimal neighborhood of a linear conguration of points in $P^{2}$, J. Alg. 298 (2008), 563-611. crossref(new window)

19.
A. V. Geramita and Y. S. Shin, k-congurations in $P^{3}$ all have extremal resolutions, J. Algebra 213 (1999), no. 1, 351-368. crossref(new window)

20.
M. Green, Generic initial ideals, Six lectures on commutative algebra (Bellaterra, 1996), 119-186, Progr. Math., 166, Birkhauser, Basel, 1998.

21.
T. Harima, Characterization of Hilbert functions of Gorenstein Artin algebras with the weak stanley property, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3631-3638. crossref(new window)

22.
T. Harima, J. C. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian k-algebras, J. Algebra. 262 (2003), no. 1, 99-126. crossref(new window)

23.
C. Mammana, Sulla varieta delle curve algebriche piane spezzate in un dato modo, Ann. Scuola Norm. Super. Pisa (3) 8 (1954), 53-75.

24.
J. Migliore and R. Miro-Roig, Ideals of general forms and the ubiquity of the weak Lefschetz property, J. Pure Appl. Algebra 182 (2003), no. 1, 79-107. crossref(new window)

25.
J. C. Migliore and F. Zanello, The strength of the weak-Lefschetz property, Preprint.

26.
L. Robbiano, J. Abbott, A. Bigatti, M. Caboara, D. Perkinson, V. Augustin, and A. Wills, CoCoA, a system for doing computations in commutative algebra, Available via anonymous ftp from cocoa.unige.it. 4.7 edition.

27.
A. Terracini, Sulle $V_{k}$ per cui la varieta degli $S_{h}$ (h + 1)-seganti ha dimensione minore dell'ordinario, Rend. Circ. Mat. Palermo 31 (1911), 392-396. crossref(new window)