JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CHARACTERIZATIONS OF LIE HIGHER AND LIE TRIPLE DERIVATIONS ON TRIANGULAR ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CHARACTERIZATIONS OF LIE HIGHER AND LIE TRIPLE DERIVATIONS ON TRIANGULAR ALGEBRAS
Li, Jiankui; Shen, Qihua;
  PDF(new window)
 Abstract
In this paper, we show that under certain conditions every Lie higher derivation and Lie triple derivation on a triangular algebra are proper, respectively. The main results are then applied to (block) upper triangular matrix algebras and nest algebras.
 Keywords
Lie derivation;Lie higher derivation;Lie triple derivation;triangular algebra;
 Language
English
 Cited by
1.
Lie Triple Derivations on𝒥-Subspace Lattice Algebras, Abstract and Applied Analysis, 2014, 2014, 1  crossref(new windwow)
2.
On Lie higher derivable mappings on prime rings, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57, 1, 137  crossref(new windwow)
3.
Lie triple derivations on primitive rings, Asian-European Journal of Mathematics, 2015, 08, 02, 1550019  crossref(new windwow)
 References
1.
D. Benkovic, Biderivations of triangular algebras, Linear Algebra Appl. 431 (2009), no. 9, 1587-1602. crossref(new window)

2.
D. Benkovic and D. Eremita, Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra 280 (2004), no. 2, 797-824. crossref(new window)

3.
M. Bresar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), no. 2, 525-546. crossref(new window)

4.
W. S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001), no. 1, 117-127. crossref(new window)

5.
W. S. Cheung, Mappings on triangular algebras, Ph. D Dissertation, University of Victoria, 2000.

6.
W. S. Cheung, Lie derivations of triangular algebras, Linear Multilinear Algebra 51 (2003), no. 3, 299-310. crossref(new window)

7.
F. Y. Lu, Lie triple derivations on nest algebras, Math. Nachr. 280 (2007), no. 8, 882-887. crossref(new window)

8.
L. W. Marcoux and A. R. Sourour, Lie isomorphisms of nest algebras, J. Funct. Anal. 164 (1999), no. 1, 163-180. crossref(new window)

9.
C. R. Miers, Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), no. 1, 57-61. crossref(new window)

10.
A. Nakajima, On generalized higher derivations, Turkish J. Math. 24 (2000), no. 3, 295-311.

11.
X. F. Qi and J. C. Hou, Lie higher derivations on Nest Algebras, Commun. Math. Res. 26 (2010), no. 2, 131-143.

12.
H. T. Wang and Q. G. Li, Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a commutative ring, Linear Algebra Appl. 430 (2009), no. 1, 66-77. crossref(new window)

13.
T. L. Wong, Jordan isomorphisms of triangular rings, Proc. Amer. Math. Soc. 133 (2005), no. 11, 3381-3388. crossref(new window)

14.
Z. K. Xiao and F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra Appl. 432 (2010), no. 10, 2615-2622. crossref(new window)

15.
J. H. Zhang, B. W. Wu, and H. X. Cao, Lie triple derivations of nest algebras, Linear Algebra Appl. 416 (2006), no. 2-3, 559-567. crossref(new window)

16.
J. H. Zhang and W. Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006), no. 1, 251-255. crossref(new window)