JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CHARACTERIZATIONS OF LIE HIGHER AND LIE TRIPLE DERIVATIONS ON TRIANGULAR ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CHARACTERIZATIONS OF LIE HIGHER AND LIE TRIPLE DERIVATIONS ON TRIANGULAR ALGEBRAS
Li, Jiankui; Shen, Qihua;
  PDF(new window)
 Abstract
In this paper, we show that under certain conditions every Lie higher derivation and Lie triple derivation on a triangular algebra are proper, respectively. The main results are then applied to (block) upper triangular matrix algebras and nest algebras.
 Keywords
Lie derivation;Lie higher derivation;Lie triple derivation;triangular algebra;
 Language
English
 Cited by
1.
Lie Triple Derivations on𝒥-Subspace Lattice Algebras, Abstract and Applied Analysis, 2014, 2014, 1  crossref(new windwow)
2.
On Lie higher derivable mappings on prime rings, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57, 1, 137  crossref(new windwow)
3.
Lie triple derivations on primitive rings, Asian-European Journal of Mathematics, 2015, 08, 02, 1550019  crossref(new windwow)
4.
Nonlinear generalized Lie triple derivation on triangular algebras, Communications in Algebra, 2017, 45, 10, 4380  crossref(new windwow)
 References
1.
D. Benkovic, Biderivations of triangular algebras, Linear Algebra Appl. 431 (2009), no. 9, 1587-1602. crossref(new window)

2.
D. Benkovic and D. Eremita, Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra 280 (2004), no. 2, 797-824. crossref(new window)

3.
M. Bresar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), no. 2, 525-546. crossref(new window)

4.
W. S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001), no. 1, 117-127. crossref(new window)

5.
W. S. Cheung, Mappings on triangular algebras, Ph. D Dissertation, University of Victoria, 2000.

6.
W. S. Cheung, Lie derivations of triangular algebras, Linear Multilinear Algebra 51 (2003), no. 3, 299-310. crossref(new window)

7.
F. Y. Lu, Lie triple derivations on nest algebras, Math. Nachr. 280 (2007), no. 8, 882-887. crossref(new window)

8.
L. W. Marcoux and A. R. Sourour, Lie isomorphisms of nest algebras, J. Funct. Anal. 164 (1999), no. 1, 163-180. crossref(new window)

9.
C. R. Miers, Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), no. 1, 57-61. crossref(new window)

10.
A. Nakajima, On generalized higher derivations, Turkish J. Math. 24 (2000), no. 3, 295-311.

11.
X. F. Qi and J. C. Hou, Lie higher derivations on Nest Algebras, Commun. Math. Res. 26 (2010), no. 2, 131-143.

12.
H. T. Wang and Q. G. Li, Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a commutative ring, Linear Algebra Appl. 430 (2009), no. 1, 66-77. crossref(new window)

13.
T. L. Wong, Jordan isomorphisms of triangular rings, Proc. Amer. Math. Soc. 133 (2005), no. 11, 3381-3388. crossref(new window)

14.
Z. K. Xiao and F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra Appl. 432 (2010), no. 10, 2615-2622. crossref(new window)

15.
J. H. Zhang, B. W. Wu, and H. X. Cao, Lie triple derivations of nest algebras, Linear Algebra Appl. 416 (2006), no. 2-3, 559-567. crossref(new window)

16.
J. H. Zhang and W. Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006), no. 1, 251-255. crossref(new window)