JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SEMIPRIME SUBMODULES OF GRADED MULTIPLICATION MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SEMIPRIME SUBMODULES OF GRADED MULTIPLICATION MODULES
Lee, Sang-Cheol; Varmazyar, Rezvan;
  PDF(new window)
 Abstract
Let G be a group. Let R be a G-graded commutative ring with identity and M be a G-graded multiplication module over R. A proper graded submodule Q of M is semiprime if whenever , where , n is a positive integer, and , then . We characterize semiprime submodules of M. For example, we show that a proper graded submodule Q of M is semiprime if and only if grad. Furthermore if M is finitely generated then we prove that every proper graded submodule of M is contained in a graded semiprime submodule of M. A proper graded submodule Q of M is said to be almost semiprime if (grad(Q)h(M))n(grad) = (Qh(M))n(grad). Let K, Q be graded submodules of M. If K and Q are almost semiprime in M such that Q + K M and for all , then we prove that Q + K is almost semiprime in M.
 Keywords
graded multiplication module;semiprime submodule;almost semiprime;
 Language
English
 Cited by
1.
Graded semiprime submodules and graded semi-radical of graded submodules in graded modules, Ricerche di Matematica, 2016  crossref(new windwow)
 References
1.
R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 2003 (2003), no. 27, 1715-1724. crossref(new window)

2.
S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33 (2006), no. 1, 3-7.

3.
S. E. Atani and F. Farzalipour, On graded secondary modules, Turkish J. Math. 31 (2007), no. 4, 371-378.

4.
A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174-178. crossref(new window)

5.
K. H. Oral, U. Tekir, and A. G. Agargun, On graded prime and primary submodules, Turk J. Math. 35 (2011), 159-167.

6.
P. F. Smith, Some remarks on multiplication module, Arch. Math. (Basel) 50 (1988), no. 3, 223-235. crossref(new window)