JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SEMIPRIME SUBMODULES OF GRADED MULTIPLICATION MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SEMIPRIME SUBMODULES OF GRADED MULTIPLICATION MODULES
Lee, Sang-Cheol; Varmazyar, Rezvan;
  PDF(new window)
 Abstract
Let G be a group. Let R be a G-graded commutative ring with identity and M be a G-graded multiplication module over R. A proper graded submodule Q of M is semiprime if whenever , where , n is a positive integer, and , then . We characterize semiprime submodules of M. For example, we show that a proper graded submodule Q of M is semiprime if and only if grad$(Q){\cap}h(M)
 Keywords
graded multiplication module;semiprime submodule;almost semiprime;
 Language
English
 Cited by
1.
Graded semiprime submodules and graded semi-radical of graded submodules in graded modules, Ricerche di Matematica, 2016  crossref(new windwow)
 References
1.
R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 2003 (2003), no. 27, 1715-1724. crossref(new window)

2.
S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33 (2006), no. 1, 3-7.

3.
S. E. Atani and F. Farzalipour, On graded secondary modules, Turkish J. Math. 31 (2007), no. 4, 371-378.

4.
A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174-178. crossref(new window)

5.
K. H. Oral, U. Tekir, and A. G. Agargun, On graded prime and primary submodules, Turk J. Math. 35 (2011), 159-167.

6.
P. F. Smith, Some remarks on multiplication module, Arch. Math. (Basel) 50 (1988), no. 3, 223-235. crossref(new window)