JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONTINUOUS ORDER REPRESENTABILITY PROPERTIES OF TOPOLOGICAL SPACES AND ALGEBRAIC STRUCTURES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONTINUOUS ORDER REPRESENTABILITY PROPERTIES OF TOPOLOGICAL SPACES AND ALGEBRAIC STRUCTURES
Campion, Maria Jesus; Candeal, Juan Carlos; Indurain, Esteban; Mehta, Ghanshyam Bhagvandas;
  PDF(new window)
 Abstract
In the present paper, we study the relationship between continuous order-representability and the fulfillment of the usual covering properties on topological spaces. We also consider the case of some algebraic structures providing an application of our results to the social choice theory context.
 Keywords
ordered structures on topological spaces;order-representability properties;covering properties;preorderable subtopologies;algebraic order-representability;social choice theory;
 Language
English
 Cited by
1.
Theory of Generalized Risk Attitudes, Decision Analysis, 2015, 12, 4, 205  crossref(new windwow)
2.
Continuous Representability of Interval Orders: The Topological Compatibility Setting, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2015, 23, 03, 345  crossref(new windwow)
3.
Topological interpretations of fuzzy subsets. A unified approach for fuzzy thresholding algorithms, Knowledge-Based Systems, 2013, 54, 163  crossref(new windwow)
 References
1.
C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, A Hitchhiker's guide, Springer, Berlin, 1999.

2.
G. Birkhoff, A note on topological groups, Compos. Math. 3 (1936), 427-430.

3.
D. S. Bridges and G. B. Mehta, Representation of Preference Orderings, Springer, Berlin, 1995.

4.
M. J. Campion, J. C. Candeal, and E. Indurain, The existence of utility functions for weakly continuous preferences on a Banach space, Math. Social Sci. 51 (2006), no. 2, 227-237. crossref(new window)

5.
M. J. Campion, J. C. Candeal, and E. Indurain, On Yi's extension property for totally preordered topological spaces, J. Korean Math. Soc. 43 (2006), no. 1, 159-181. crossref(new window)

6.
M. J. Campion, J. C. Candeal, and E. Indurain, Preorderable topologies and order-representability of topological spaces, Topology Appl. 156 (2009), no. 18, 2971-2978. crossref(new window)

7.
M. J. Campion, J. C. Candeal, and E. Indurain, Semicontinuous planar total preorders on non-separable metric spaces, J. Korean Math. Soc. 46 (2009), no. 4, 701-711.

8.
M. J. Campion, J. C. Candeal, E. Indurain, and G. B. Mehta, Representable topologies and locally connected spaces, Topology Appl. 154 (2007), no. 10, 2040-2049. crossref(new window)

9.
J. C. Candeal, C. Herves, and E. Indurain, Some results on representation and extension of preferences, J. Math. Econom. 29 (1998), no. 1, 75-81. crossref(new window)

10.
J. C. Candeal and E. Indurain, Utility functions on chains, J. Math. Econom. 22 (1993), no. 2, 161-168. crossref(new window)

11.
J. C. Candeal and E. Indurain, A note on linear utility, Econom. Theory 6 (1995), no. 3, 519-522. crossref(new window)

12.
J. C. Candeal and E. Indurain, Lexicographic behaviour of chains, Arch. Math. (Basel) 72 (1999), no. 2, 145- 152. crossref(new window)

13.
J. C. Candeal, E. Indurain, and G. B. Mehta, Order preserving functions on ordered topological vector spaces, Bull. Austral. Math. Soc. 60 (1999), no. 1, 55-65. crossref(new window)

14.
J. C. Candeal, E. Indurain, and G. B. Mehta, Utility functions on locally connected spaces, J. Math. Econom. 40 (2004), no. 6, 701-711. crossref(new window)

15.
J. C. Candeal, E. Indurain, and J. A. Molina, Numerical representability of ordered topological spaces with compatible algebraic structure, To appear in Order. DOI 10.1007/s 11083-011-9202-8. crossref(new window)

16.
H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15. crossref(new window)

17.
G. Debreu, Representation of a preference ordering by a numerical function, In R. Thrall, C. Coombs and R. Davies (Eds.), Decision processes, John Wiley. New York, 1954.

18.
J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.

19.
S. Eilenberg, Ordered topological spaces, Amer. J. Math. 63 (1941), 39-45. crossref(new window)

20.
R. Engelking, General Topology, Revised and Completed Edition. Heldermann Verlag. Berlin, 1989.

21.
M. Estevez and C. Herves, On the existence of continuous preference orderings without utility representations, J. Math. Econom. 24 (1995), no. 4, 305-309. crossref(new window)

22.
M. Fleurbaey and P. J. Hammond, Interpersonally comparable utility, Chapter 21 of the Handbook of Utility Theory (Vol. 2), Edited by Barbera S, Hammond PJ and Seidl C, Kluwer Academic Publishers. Amsterdam, 2004.

23.
L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Reading, Mas- sachusetts, 1963.

24.
V. Gutev, Weak orderability of second countable spaces, Fund. Math. 196 (2007), no. 3, 275-287. crossref(new window)

25.
G. Herden, Topological spaces for which every continuous total preorder can be represented by a continuous utility function, Math. Social Sci. 22 (1991), no. 2, 123-136. crossref(new window)

26.
G. Herden and A. Pallack, Useful topologies and separable systems, Appl. Gen. Topol. 1 (2000), no. 1, 61-82.

27.
S. Kakutani, Uber die Metrisation der topologischen Gruppen, Proc. Imp. Acad. 12 (1936), no. 4, 82-84. crossref(new window)

28.
J. L. Kelley, General Topology, Van Nostrand. New York, 1955.

29.
D. J. Lutzer and H. R. Bennet, Separability, the countable chain condition and the Lindelof property on linearly ordered spaces, Proc. Amer. Math. Soc. 23 (1969), 664- 667.

30.
J. R. Munkres, Topology, (2nd ed.), Prentice Hall. New York, 2000.

31.
S. Purisch, A history of results on orderability and suborderability, In Handbook of the history of General Topology, Vol. 2, pp. 689-702. Kluwer. Dordrecht, 1998.

32.
C. E. Rickart, General Theory of Banach Algebras, Van Nostrand. Princeton, N.J., 1960.

33.
H. H. Schaefer, Topological Vector Spaces, (3rd ed.), Springer Verlag. New York, 1971.

34.
P. Simon, A connected, not separably connected metric space, Rend. Istit. Mat. Univ. Trieste 32 (2001), suppl. 2, 127-133.

35.
L. A. Steen and J. A. Jr. Seebach, Counterexamples in Topology, (2nd ed.), Springer Verlag. New York, 1978.

36.
J. van Dalen and E. Wattel, A topological characterization of ordered spaces, General Topology and Appl. 3 (1973), 347-354. crossref(new window)

37.
G. Yi, Continuous extension of preferences, J. Math. Econom. 22 (1993), no. 6, 547-555. crossref(new window)