JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZATIONS OF T-EXTENDING MODULES RELATIVE TO FULLY INVARIANT SUBMODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZATIONS OF T-EXTENDING MODULES RELATIVE TO FULLY INVARIANT SUBMODULES
Asgari, Shadi; Haghany, Ahmad;
  PDF(new window)
 Abstract
The concepts of t-extending and t-Baer for modules are generalized to those of FI-t-extending and FI-t-Baer respectively. These are also generalizations of FI-extending and nonsingular quasi-Baer properties respectively and they are inherited by direct summands. We shall establish a close connection between the properties of FI-t-extending and FI-t-Baer, and give a characterization of FI-t-extending modules relative to an annihilator condition.
 Keywords
nonsingular and -torsion modules;t-closed submodules;FIextending and FI-t-extending modules;quasi-Baer and FI-t-Baer modules;
 Language
English
 Cited by
1.
Modules Whoset-Closed Submodules Have a Summand as a Complement, Communications in Algebra, 2014, 42, 12, 5299  crossref(new windwow)
 References
1.
Sh. Asgari and A. Haghany, T-extending modules and t-Baer modules, Comm. Algebra 39 (2011), 1605-1623. crossref(new window)

2.
G. F. Birkenmeier, G. Calugareanu, L. Fuchs, and H. P. Goeters, The fully invariant extending property for abelian groups, Comm. Algebra 29 (2001), no. 2, 673-685. crossref(new window)

3.
G. F. Birkenmeier, B. J. Muller, and S. T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summand, Comm. Algebra 30 (2002), no. 3, 1395- 1415. crossref(new window)

4.
G. F. Birkenmeier, J. K. Park, and S. T. Rizvi, Modules with fully invariant submodules essential in fully invariant summands, Comm. Algebra 30 (2002), no. 4, 1833-1852. crossref(new window)

5.
G. F. Birkenmeier, J. K. Park, and S. T. Rizvi, Generalized triangular matrix rings and the fully invariant extending property, Rocky Mountain J. Math. 32 (2002), no. 4, 1299-1319. crossref(new window)

6.
G. F. Birkenmeier, J. K. Park, and S. T. Rizvi, Modules with FI-extending hulls, Glasg. Math. J. 51 (2009), no. 2, 347-357. crossref(new window)

7.
M. A. Kamal and A. M. Menshawy, CS-modules and annihilator conditions, Int. J. Math. Math. Sci. 2003 (2003), no. 50, 3195-3202. crossref(new window)

8.
T. Y. Lam, Lectures on Modules and Rings. Graduate Texts in Mathematics, Vol. 189, Springer-Verlag, New York/Berlin, 1998.

9.
A. C. Ozcan, A. Harmanci, and P. F. Smith, Duo modules, Glasg. Math. J. 48 (2006), no. 3, 533-545. crossref(new window)

10.
S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra 32 (2004), no. 1, 103-123. crossref(new window)

11.
R. Wisbauer, M. F. Yousif, and Y. Zhou, Ikeda-Nakayama modules, Beitrage Algebra Geom. 43 (2002), no. 1, 111-119.