JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SHIFT GENERATED DUAL FRAMES FOR LOCALLY COMPACT ABELIAN GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SHIFT GENERATED DUAL FRAMES FOR LOCALLY COMPACT ABELIAN GROUPS
Ahmadi, Ahmad; Askari-Hemmat, Ataollah;
  PDF(new window)
 Abstract
Let be a metrizable, -compact locally compact abelian group with a compact open subgroup. In this paper we define the Gramian and the dual Gramian operators for shift invariant subspaces of and we use them to characterize shift generated dual frames for shift in- variant spaces, which forms a frame for a subspace of . We present necessary and sufficient conditions for which standard dual is a unique SG-dual frame of type I and type II.
 Keywords
frames;Gramian operator;locally compact abelian group;shift invariant space;SG-dual frame;
 Language
English
 Cited by
 References
1.
A. Ahmadi, A. A. Hemmat, and R. R. Tousi, Shift invariant spaces for local fields, Int. J. Wavelets Multiresolut. Inf. Process. 9 (2011), no. 3, 417-426. crossref(new window)

2.
A. Ahmadi, A. A. Hemmat, and R. R. Tousi, A characterization of shift invariant spaces on LCA group G with a compact open subgroup, preprint.

3.
J. J. Benedetto and R. L. Benedetto, A wavelet theory for local elds and related groups, J. Geom. Anal. 14 (2004), no. 3, 423-456. crossref(new window)

4.
R. L. Benedetto, Examples of wavelets for local elds, Wavelets, frames and operator theory, 27-47, Contemp. Math., 345, Amer. Math. Soc., Providence, RI, 2004.

5.
M. Bownik, The structure of shift invariant subspaces of $L^{2}(R^{n})$, J. Funct. Anal. 177 (2000), no. 2 282-309. crossref(new window)

6.
O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2003.

7.
I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansion, J. Math. Phys. 27 (1986), no. 5, 1271-1283. crossref(new window)

8.
R. J. Duffin and A. C. Schaefer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. crossref(new window)

9.
G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 1995.

10.
P. H. Frampton and Y. Okada, P-adic string N-point function, Phys. Rev. Lett. B 60 (1988), 484-486. crossref(new window)

11.
H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, London, 1964.

12.
A. A. Hemmat and J. P. Gabardo, The uniqueness of shift-generated duals for frames in shift-invariant subspaces, J. Fourier Anal. Appl. 13 (2007), no. 5, 589-606. crossref(new window)

13.
E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups. Integration Theory, Group Representations, Springer, Berlin, 1963.

14.
R. A. Kamyabi Gol and R. R. Tousi, The structure of shift invariant spaces on locally compact abelian group, J. Math. Anal. Appl. 340 (2008), 219-225. crossref(new window)

15.
R. A. Kamyabi Gol and R. R. Tousi, A range function approach to shift invariant spaces on locally compact abelian group, Int. J. Wavelets Multiresolut. Inf. Process 8 (2010), no. 1, 49-59. crossref(new window)

16.
N. J. Munch, Noise reduction in tight Weyl-Heisenberg frames, IEEE Trans. Inform. Theory 38 (1992), no. 2, part 2, 608-616. crossref(new window)

17.
H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, Clarendon Press. Oxford, 2000.

18.
W. Rudin, Real and Complex Analysis, McGraw-Hill Co., Singapore, 1987.