JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FACIAL STRUCTURES FOR SEPARABLE STATES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FACIAL STRUCTURES FOR SEPARABLE STATES
Choi, Hyun-Suk; Kye, Seung-Hyeok;
  PDF(new window)
 Abstract
The convex cone generated by separable states is contained in the cone of all positive semi-definite block matrices whose block transposes are also positive semi-definite. We characterize faces of the cone induced by faces of the cone which are determined by pairs of subspaces of matrices.
 Keywords
separable states;faces;entanglement;
 Language
English
 Cited by
1.
Separability problem for multipartite states of rank at most 4, Journal of Physics A: Mathematical and Theoretical, 2013, 46, 27, 275304  crossref(new windwow)
2.
FACIAL STRUCTURES FOR VARIOUS NOTIONS OF POSITIVITY AND APPLICATIONS TO THE THEORY OF ENTANGLEMENT, Reviews in Mathematical Physics, 2013, 25, 02, 1330002  crossref(new windwow)
3.
Optimality for indecomposable entanglement witnesses, Physical Review A, 2012, 86, 3  crossref(new windwow)
4.
Separable States with Unique Decompositions, Communications in Mathematical Physics, 2014, 328, 1, 131  crossref(new windwow)
5.
Geometry for separable states and construction of entangled states with positive partial transposes, Physical Review A, 2013, 88, 2  crossref(new windwow)
6.
Qubit-qudit states with positive partial transpose, Physical Review A, 2012, 86, 6  crossref(new windwow)
7.
Dimension formula for induced maximal faces of separable states and genuine entanglement, Quantum Information Processing, 2015, 14, 9, 3335  crossref(new windwow)
8.
Entanglement witnesses arising from Choi type positive linear maps, Journal of Physics A: Mathematical and Theoretical, 2012, 45, 41, 415305  crossref(new windwow)
9.
Effects of Aromatherapy on Stress, Sleep, Nausea and Vomiting during Patient Controlled Analgesia Treatment of Patients with Hysterectomy, Korean Journal of Women Health Nursing, 2013, 19, 4, 211  crossref(new windwow)
10.
Geometry of the Faces for Separable States Arising from Generalized Choi Maps, Open Systems & Information Dynamics, 2012, 19, 02, 1250009  crossref(new windwow)
 References
1.
E. Alfsen and F. Shultz, Unique decompositions, faces, and automorphisms of separable states, J. Math. Phys. 51 (2010), 052201, 13 pp.

2.
W. Arveson, Quantum channels that preserve entanglement, Math. Ann. 343 (2009), no. 4, 757-771. crossref(new window)

3.
R. Augusiak, J. Grabowski, M.Kus, and M. Lewenstein, Searching for extremal PPT entangled states, Optics Commun. 283 (2010), 805-813. crossref(new window)

4.
S. Bandyopadhyay, S. Ghosh, and V. Roychowdhury, Non-full rank bound entangled states satisfying the range criterion, Phys. Rev. A 71 (2005), 012316, 6 pp.

5.
I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge University Press, 2006.

6.
C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Unextendible Product Bases and Bound Entanglement, Phys. Rev. Lett. 82 (1999), no. 26, part 1, 5385-5388. crossref(new window)

7.
D. Bruss and A. Peres, Construction of quantum states with bound entanglement, Phys. Rev. A 61 (2000), no. 3, 030301, 2 pp.

8.
E.-S. Byeon and S.-H. Kye, Facial structures for positive linear maps in two-dimensional matrix algebra, Positivity 6 (2002), no. 4, 369-380. crossref(new window)

9.
S.-J. Cho, S.-H. Kye, and S. G. Lee, Generalized Choi maps in three-dimensional matrix algebra, Linear Algebra Appl. 171 (1992), 213-224. crossref(new window)

10.
M.-D. Choi, Some assorted inequalities for positive linear maps on $C^{*}$-algebras, J. Operator Theory. 4 (1980), no. 2, 271-285.

11.
M.-D. Choi, Positive linear maps, Operator Algebras and Applications (Kingston, 1980), pp. 583-590, Proc. Sympos. Pure Math. Vol 38. Part 2, Amer. Math. Soc., 1982.

12.
D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Unextendible Product Bases, Uncompletable Product Bases and Bound Entanglement, Comm. Math. Phys. 238 (2003), no. 3, 379-410. crossref(new window)

13.
M.-H. Eom and S.-H. Kye, Duality for positive linear maps in matrix algebras, Math. Scand. 86 (2000), no. 1, 130-142.

14.
L. Gurvits, Classical complexity and quantum entanglement, J. Comput. System Sci. 69 (2004), no. 3, 448-484. crossref(new window)

15.
K.-C. Ha and S.-H. Kye, Construction of entangled states with positive partial transposes based on indecomposable positive linear maps, Phys. Lett. A 325 (2004), no. 5-6, 315- 323. crossref(new window)

16.
K.-C. Ha and S.-H. Kye, Construction of 3 $\bigotimes$ 3 entangled edge states with positive partial transpose, J. Phys. A 38 (2005), no. 41, 9039-9050. crossref(new window)

17.
K.-C. Ha, S.-H. Kye, and Y. S. Park, Entangled states with positive partial transposes arising from indecomposable positive linear maps, Phys. Lett. A 313 (2003), no. 3, 163-174. crossref(new window)

18.
M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A 223 (1996), no. 1-2, 1-8. crossref(new window)

19.
P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition, Phys. Lett. A 232 (1997), no. 5, 333-339. crossref(new window)

20.
P. Horodecki, M. Lewenstein, G. Vidal, and I. Cirac, Operational criterion and construc- tive checks for the separablity of low rank density matrices, Phys. Rev. A 62 (2000), 032310, 10 pp.

21.
M. Junge, C. Palazuelos, D. Perez-Garcia, I. Villanueva, and M. Wolf, Operator space theory: a natural framework for Bell inequalities, Phys. Rev. Lett. 104 (2010), no. 17, 170405, 4 pp.

22.
J. K. Korbicz, M. L. Almeida, J. Bae, M. Lewenstein, and A. Acin, Structural approxi- mations to positive maps and entanglement-breaking channels, Phys. Rev. A 78 (2008), 062105, 17 pp.

23.
S.-H. Kye, Facial structures for unital positive linear maps in the two dimensional matrix algebra, Linear Algebra Appl. 362 (2003), 57-73. crossref(new window)

24.
S.-H. Kye, Facial structures for decomposable positive linear maps in matrix algebras, Positivity 9 (2005), no. 1, 63-79.

25.
M. Marciniak, Rank properties of exposed positive maps, preprint, arXiv:1103.3497.

26.
A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77 (1996), no. 8, 1413-1415. crossref(new window)

27.
W. F. Stinespring, Positive functions on $C^{*}$-algebras, Proc. Amer. Math. Soc. 6 (1955),211-216.

28.
E. Strmer, Positive linear maps of operator algebras, Acta Math. 110 (1963), 233-278. crossref(new window)

29.
E. Strmer, Decomposable positive maps on $C^{*}$-algebras, Proc. Amer. Math. Soc. 86 (1982), no. 3, 402-404.

30.
E. Strmer, Separable states and positive maps, J. Funct. Anal. 254 (2008), no. 8, 2303- 2312. crossref(new window)

31.
S. L. Woronowicz, Positive maps of low dimensional matrix algebras, Rep. Math. Phys. 10 (1976), no. 2, 165-183. crossref(new window)