JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BEST CONSTANT IN ZYGMUND`S INEQUALITY AND RELATED ESTIMATES FOR ORTHOGONAL HARMONIC FUNCTIONS AND MARTINGALES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BEST CONSTANT IN ZYGMUND`S INEQUALITY AND RELATED ESTIMATES FOR ORTHOGONAL HARMONIC FUNCTIONS AND MARTINGALES
Osekowski, Adam;
  PDF(new window)
 Abstract
For any > we determine the optimal constant for which the following holds. If , are conjugate harmonic functions on the unit disc with $\tilde{u}(0)
 Keywords
harmonic function;martingale;LlogL inequality;differential sub-ordination;best constants;
 Language
English
 Cited by
 References
1.
R. Banuelos and G. Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms, Duke Math. J. 80 (1995), no. 3, 575-600. crossref(new window)

2.
R. Banuelos and G. Wang, Orthogonal martingales under differential subordination and application to Riesz transforms, Illinois J. Math. 40 (1996), no. 4, 678-691.

3.
R. Banuelos and G. Wang, Davis's inequality for orthogonal martingales under differential subordination, Michigan Math. J. 47 (2000), no. 1, 109-124. crossref(new window)

4.
D. L. Burkholder, Differential subordination of harmonic functions and martingales, Harmonic analysis and partial differential equations (El Escorial, 1987), 1-23, Lecture Notes in Math., 1384, Springer, Berlin, 1989.

5.
C. Dellacherie and P. A. Meyer, Probabilities and Potential B, North-Holland, Amsterdam, 1982.

6.
M. Essen, D. F. Shea, and C. S. Stanton, Best constants in Zygmund's inequality for conjugate functions, Papers on analysis, 73-80, Rep. Univ. Jyvaskyla Dep. Math. Stat., 83, University of Jyvaskila, 2001.

7.
M. Essen, D. F. Shea, and C. S. Stanton, Sharp L $log^{\alpha}$ L inequalities for conjugate functions, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 2, 623-659. crossref(new window)

8.
T. W. Gamelin, Uniform Algebras and Jensen Measures, London Math. Soc. Lecture Notes Series, Vol. 32, Cambridge Univ. Press, Cambridge/New York, 1978.

9.
P. Janakiraman, Best weak-type (p, p) constants, 1 < p < 2, for orthogonal harmonic functions and martingales, Illinois J. Math. 48 (2004), no. 3, 909-921.

10.
A. Osekowski, Sharp inequalities for differentially subordinate harmonic functions and martingales, to appear in Canadian Math. Bull.

11.
G. Peskir and A. Shiryaev, Optimal Stopping and Free Boundary Problems, Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel, 2006.

12.
S. K. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math. 44 (1972), 165-179.

13.
M. Riesz, Les fonctions conjugees et ler series de Fourier, C. R. Acad. Paris, 178 (1924), 1464-1467.

14.
M. Riesz, Sur les fonctions conjugees, Math. Z. 27 (1927), 218-244.

15.
D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd edition, Springer Verlag, 1999.

16.
G.Wang, Differential subordination and strong differential subordination for continuous time martingales and related sharp inequalities, Ann. Probab. 23 (1995), no. 2, 522-551. crossref(new window)

17.
A. Zygmund, Sur les fonctions conjugees, Fund. Math. 13 (1929), 284-303.