JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SPECIAL WEAK PROPERTIES OF GENERALIZED POWER SERIES RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SPECIAL WEAK PROPERTIES OF GENERALIZED POWER SERIES RINGS
Ouyang, Lunqun;
  PDF(new window)
 Abstract
Let be a ring and the set of all nilpotent elements of . For a subset of a ring , we define $N_R(X)
 Keywords
weak annihilator;weak associated prime;generalized power series;
 Language
English
 Cited by
1.
Nilpotent elements and nil-Armendariz property of skew generalized power series rings, Asian-European Journal of Mathematics, 2016, 1750034  crossref(new windwow)
 References
1.
D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. crossref(new window)

2.
S. Annin, Associated primes over skew polynomial rings, Comm. Algebra 30 (2002), no. 5, 2511-2528. crossref(new window)

3.
S. Annin, Associated primes over Ore extension rings, J. Algebra Appl. 3 (2004), no. 2, 193-205. crossref(new window)

4.
J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math. 58 (1975), no. 1, 1-13. crossref(new window)

5.
J. Brewer and W. Heinzer, Associated primes of principal ideals, Duke Math. J. 41 (1974), 1-7. crossref(new window)

6.
G. A. Elliott and P. Ribenboim, Fields of generalized power series, Arch. Math. (Basel) 54 (1990), no. 4, 365-371. crossref(new window)

7.
C. Faith, Associated primes in commutative polynomial rings, Comm. Algebra 28 (2000), no. 8, 3983-3986. crossref(new window)

8.
Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52. crossref(new window)

9.
C. Y. Hong, N. K. Kim, T. K. Kwak, and Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (2005), no. 3, 231-242. crossref(new window)

10.
J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. crossref(new window)

11.
Z. Liu, PF-rings of generalised power series, Bull. Austral. Math. Soc. 57 (1998), no. 3, 427-432. crossref(new window)

12.
Z. Liu, Injectivity of modules of generalized inverse polynomials, Comm. Algebra 29 (2001), no. 2, 583-592. crossref(new window)

13.
Z. Liu, Special properties of rings of generalized power series, Comm. Algebra 32 (2004), no. 8, 3215-3226. crossref(new window)

14.
G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. crossref(new window)

15.
L. Ouyang, Ore extensions of weak zip rings, Glasg. Math. J. 51 (2009), no. 3, 525-537. crossref(new window)

16.
L. Ouyang and Y. Chen, On weak symmetric rings, Comm. Algebra 38 (2010), no. 2, 697-713. crossref(new window)

17.
P. Ribenboim, Rings of generalized power series: Nilpotent elements, Abh. Math. Sem. Univ. Hamburg 61 (1991), 15-33. crossref(new window)

18.
P. Ribenboim, Noetherian rings of generalized power series, J. Pure. Appl. Algebra 79 (1992), no. 3, 293-312. crossref(new window)

19.
P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), no. 2, 327-338. crossref(new window)

20.
R. C. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math. 42 (1972), 251-257. crossref(new window)