JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON ω-LIMIT SETS AND ATTRACTION OF NON-AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON ω-LIMIT SETS AND ATTRACTION OF NON-AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS
Liu, Lei; Chen, Bin;
  PDF(new window)
 Abstract
In this paper we study -limit sets and attraction of non-autonomous discrete dynamical systems. We introduce some basic concepts such as -limit set and attraction for non-autonomous discrete system. We study fundamental properties of -limit sets and discuss the relationship between -limit sets and attraction for non-autonomous discrete dynamical systems.
 Keywords
-limit set;non-autonomous discrete dynamical system;attraction;regular space;
 Language
English
 Cited by
1.
On Nonautonomous Discrete Dynamical Systems, International Journal of Analysis, 2014, 2014, 1  crossref(new windwow)
 References
1.
S. Agronsky, A. Bruckner, J. Ceder, and T. Pearson, The structure of ${\omega}$-limit sets for continuous functions, Real Anal. Exchange 15 (1989/90), no. 2, 483-510.

2.
E. D'Aniello and T. H. Steele, Asymptotically stable sets and the stability of ${\omega}$-limit sets, J. Math. Anal. Appl. 321 (2006), no. 2, 867-879. crossref(new window)

3.
L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer Verlag, Berlin, 1992.

4.
C. J. Braga Barros and J. A. Souza, Attractors and chain recurrence for semigroup actions, J. Dynam. Differential Equations 22 (2010), no. 4, 723-740. crossref(new window)

5.
J. S. Canovas, On ${\omega}$-limit sets of non-autonomous discrete systems, J. Difference Equ. Appl. 12 (2006), no. 1, 95-100. crossref(new window)

6.
R. Engelking, General Topology, PWN, Warszawa, 1977.

7.
V. V. Fedorenko, E. Yu. Romanenko, and A. N. Sharkovsky, Trajectories of intervals in one-dimensional dynamical systems, J. Difference Equ. Appl. 13 (2007), no. 8-9, 821-828. crossref(new window)

8.
J. K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI, 1988.

9.
X. Huang, X. Wen, and F. Zeng, Topological pressure of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory 8 (2008), no. 1, 43-48.

10.
X. Huang, X. Wen, and F. Zeng, Pre-image entropy of nonautonomous dynamical systems, J. Syst. Sci. Complex. 21 (2008), no. 3, 441-445. crossref(new window)

11.
R. Kempf, On ${\Omega$-limit sets of discrete-time dynamical systems, J. Difference Equ. Appl. 8 (2002), no. 12, 1121-1131. crossref(new window)

12.
S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996), no. 2-3, 205-233.

13.
S. Kolyada, L. Snoha, and S. Trofimchuk, On minimality of nonautonomous dynamical systems, Nonlinear Oscil. 7 (2004), no. 1, 83-89. crossref(new window)

14.
W. Krabs, Stability and controllability in non-autonomous time-discrete dynamical systems, J. Difference Equ. Appl. 8 (2002), no. 12, 1107-1118. crossref(new window)

15.
A. M. Marzocchi and S. Z. Necca, Attractors for dynamical systems in topological spaces, Discrete Contin. Dyn. Syst. 8 (2002), no. 3, 585-597. crossref(new window)

16.
E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. crossref(new window)

17.
R. A. Mimna and T. H. Steele, Asymptotically stable sets for semi-omeomorphisms, Nonlinear Anal. 59 (2004), no. 6, 849-855. crossref(new window)

18.
P. Oprocha, Topological approach to chain recurrence in continuous dynamical systems, Opuscula Math. 25 (2005), no. 2, 261-268.

19.
P. Oprocha and P. Wilczynski, Chaos in nonautonomous dynamical systems, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 17 (2009), no. 3, 209-221.

20.
C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd ed. Boca Raton, FL: CRc Press Inc; 1999.

21.
Y. Shi and G. Chen, Chaos of time-varying discrete dynamical systems, J. Difference Equ. Appl. 15 (2009), no. 5, 429-449. crossref(new window)

22.
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin, 1988.

23.
C. Tian and G. Chen, Chaos of a sequence of maps in a metric space, Chaos Solitons Fractals 28 (2006), no. 4, 1067-1075. crossref(new window)