JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOLUTION OF SEMICOERCIVE SIGNORINI PROBLEM BASED ON A DUALITY SCHEME WITH MODIFIED LAGRANGIAN FUNCTIONAL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOLUTION OF SEMICOERCIVE SIGNORINI PROBLEM BASED ON A DUALITY SCHEME WITH MODIFIED LAGRANGIAN FUNCTIONAL
Namm, Robert V.; Woo, Gyung-Soo; Xie, Shu-Sen; Yi, Su-Cheol;
  PDF(new window)
 Abstract
In this paper, the iterative Uzawa method with a modified Lagrangian functional is investigated to seek a saddle point for the semicoercive variational Signorini inequality.
 Keywords
Signorini problem;modified Lagrangian functional;saddle point;Uzawa method;Gteaux derivative;
 Language
English
 Cited by
1.
LAGRANGE MULTIPLIER METHOD FOR SOLVING VARIATIONAL INEQUALITY IN MECHANICS,;;

대한수학회지, 2015. vol.52. 6, pp.1195-1207 crossref(new window)
1.
LAGRANGE MULTIPLIER METHOD FOR SOLVING VARIATIONAL INEQUALITY IN MECHANICS, Journal of the Korean Mathematical Society, 2015, 52, 6, 1195  crossref(new windwow)
2.
Semicoercive Variational Inequalities: From Existence to Numerical Solution of Nonmonotone Contact Problems, Journal of Optimization Theory and Applications, 2016, 171, 2, 422  crossref(new windwow)
 References
1.
G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.

2.
G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Nauka, Moscow, 1980.

3.
G. Fikera, Existence Theorems in Elasticity, Springer-Verlag, Berlin, 1976.

4.
G. Fikera, Existence Theorems in Elasticity, Nauka, Moskow, 1980.

5.
I. Glavacek, J. Haslinger, I. Necas, and J. Lovisek, Numerical Solution of Variational Inequalities, Springer-Verlag, Berlin, 1988.

6.
I. Glavacek, J. Haslinger, I. Necas, and J. Lovisek, Numerical Solution of Variational Inequalities, Mir, Moscow, 1986.

7.
R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984.

8.
R. Glowinski, J. L. Lions, and R. Tremolieres, Numerical Analysis of Variational In- equalities, North-Holland, Amsterdam, 1981.

9.
N. Kikuchi and T. Oden, Contact Problem in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.

10.
R. V. Namm and S. A. Sachkov, Solution of the quasi-variational Signorini inequality by the method of successive approximations, Zh. Vychisl. Mat. Mat. Fiz. 49 (2009), no. 5, 805-814; translation in Comput. Math. Math. Phys. 49 (2009), no. 5, 776-785.

11.
G. Vu, S. Kim, R. V. Namm, and S. A. Sachkov, The method of iterative proximal regularization for finding a saddle point in the semi-coercive Signorini problem, Zh. Vychisl. Mat. Mat. Fiz. 46 (2006), no. 11, 2024-2031; translation in Comput. Math. Math. Phys. 46 (2006), no. 11, 1932-1939.

12.
G. Woo, R. V. Namm, and S. A. Sachkoff, An iterative method, based on a modified Lagrange functional, for finding a saddle point for the semi-coercive Signorini problem, Zh. Vychisl. Mat. Mat. Fiz. 46 (2006), no. 1, 26-36; translation in Comput. Math. Math. Phys. 46 (2006), no. 1, 23-33.