JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE ORBIT OF A β-TRANSFORMATION CANNOT LIE IN A SMALL INTERVAL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE ORBIT OF A β-TRANSFORMATION CANNOT LIE IN A SMALL INTERVAL
Kwon, Do-Yong;
  PDF(new window)
 Abstract
For > 1, let : [0, 1] [0, 1) be the -transformation. We consider an invariant -orbit closure contained in a closed interval with diameter 1/, then define a function by the supremum such -orbit with frequency in base , i.e., the maximum value in -orbit closure. This paper effectively determines the maximal domain of , and explicitly specifies all possible minimal intervals containing -orbits.
 Keywords
-expansion;-transformation;Sturmian word;Christoffel word;
 Language
English
 Cited by
1.
A one-parameter family of Dirichlet series whose coefficients are Sturmian words, Journal of Number Theory, 2015, 147, 824  crossref(new windwow)
2.
Exceptional parameters of linear mod one transformations and fractional parts {ξ(p/q)n}, Comptes Rendus Mathematique, 2015, 353, 4, 291  crossref(new windwow)
3.
A two-dimensional singular function via Sturmian words in base β, Journal of Number Theory, 2013, 133, 11, 3982  crossref(new windwow)
4.
Moments of discrete measures with dense jumps induced by β-expansions, Journal of Mathematical Analysis and Applications, 2013, 399, 1, 1  crossref(new windwow)
 References
1.
B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. (2) 165 (2007), no. 2, 547-565. crossref(new window)

2.
J.-P. Allouche and A. Glen, Distribution modulo 1 and the lexicographic world, Ann. Sci. Math. Quebec 33 (2009), no. 2, 125-143.

3.
J.-P. Allouche and A. Glen, Extremal properties of (epi)Sturmian sequences and distribution modulo 1, Enseign. Math. (2) 56 (2010), no. 3-4, 365-401. crossref(new window)

4.
J. Berstel, A. Lauve, C. Reutenauer, and F. V. Saliola, Combinatorics on Words, American Mathematical Society, 2009.

5.
F. Blanchard, ${\beta}$-expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (1989), no. 2, 131-141. crossref(new window)

6.
Y. Bugeaud and A. Dubickas, Fractional parts of powers and Sturmian words, C. R. Math. Acad. Sci. Paris 341 (2005), no. 2, 69-74. crossref(new window)

7.
S. Bullett and P. Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 3, 451-481. crossref(new window)

8.
E. M. Coven and G. A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153. crossref(new window)

9.
D. P. Chi and D. Y. Kwon, Sturmian words, ${\beta}$-shifts, and transcendence, Theoret. Comput. Sci. 321 (2004), no. 2-3, 395-404. crossref(new window)

10.
S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997), no. 2, 146-161. crossref(new window)

11.
L. Flatto, Z-numbers and ${\beta}$-transformations, Symbolic dynamics and its applications (New Haven, CT, 1991), 181-201, Contemp. Math., 135, Amer. Math. Soc., Providence, RI, 1992.

12.
L. Flatto, J. C. Lagarias, and A. D. Pollington, On the range of fractional parts {${\xi}(p/q)^n$}, Acta Arith. 70 (1995), no. 2, 125-147.

13.
D. Y. Kwon, A devil's staircase from rotations and irrationality measures for Liouville numbers, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 3, 739-756.

14.
D. Y. Kwon, A two dimensional singular function via Sturmian words in base ${\beta}$, preprint (2011). Available at http://www.math.jnu.ac.kr/doyong/paper/twosing_Apr2011.pdf

15.
M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002.

16.
K. Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc. 8 (1968), 313-321. crossref(new window)

17.
M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. crossref(new window)

18.
W. Parry, On the ${\beta}$-expansion of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416. crossref(new window)

19.
A. Renyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493. crossref(new window)