INTERVAL CRITERIA FOR FORCED OSCILLATION OF DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN AND NONLINEARITIES GIVEN BY RIEMANN-STIELTJES INTEGRALS

- Journal title : Journal of the Korean Mathematical Society
- Volume 49, Issue 5, 2012, pp.1017-1030
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2012.49.5.1017

Title & Authors

INTERVAL CRITERIA FOR FORCED OSCILLATION OF DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN AND NONLINEARITIES GIVEN BY RIEMANN-STIELTJES INTEGRALS

Hassan, Taher S.; Kong, Qingkai;

Hassan, Taher S.; Kong, Qingkai;

Abstract

We consider forced second order differential equation with -Laplacian and nonlinearities given by a Riemann-Stieltjes integrals in the form of $$(p(t){\phi}_{\gamma}(x^{\prime}(t)))^{\prime}+q_0(t){\phi}_{\gamma}(x(t))+{\int}^b_0q(t,s){\phi}_{{\alpha}(s)}(x(t))d{\zeta}(s)

Keywords

interval criteria;forced oscillation;-Laplacian;nonlinear differential equations;

Language

English

Cited by

1.

2.

3.

4.

References

1.

R. P. Agarwal, S. R. Grace, and D. O'Regan, Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic, Dordrecht, 2002.

2.

E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, 1961.

3.

G. J. Butler, Oscillation theorems for a nonlinear analogue of Hill's equation, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 106, 159-171.

4.

G. J. Butler, Integral averages and the oscillation of second order ordinary differential equations, SIAM J. Math. Anal. 11 (1980), no. 1, 190-200.

5.

D. Cakmak and A. Tiryaki, Oscillation criteria for certain forced second order nonlinear differential equations with delayed argument, Comput. Math. Appl. 49 (2005), no. 11-12, 1647-1653.

6.

C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations, Trans. Amer. Math. Soc. 167 (1972), 399-434.

7.

E. M. Elabbasy and T. S. Hassan, Interval oscillation for second order sublinear differ- ential equations with a damping term, Int. J. Dyn. Syst. Differ. Equ. 1 (2008), no. 4, 291-299.

8.

E. M. Elabbasy, T. S. Hassan, and S. H. Saker, Oscillation of second-order nonlinear differential equations with a damping term, Electron. J. Differential Equations 2005 (2005), No. 76, 13 pp.

9.

M. A. El-Sayed, An oscillation criterion for a forced second order linear differential equation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 813-817.

10.

L. Erbe, T. S. Hassan, and A. Peterson, Oscillation of second order neutral delay differential equations, Adv. Dyn. Syst. Appl. 3 (2008), no. 1, 53-71.

11.

A. F. Guvenilir and A. Zafer, Second order oscillation of forced functional differential equations with oscillatory potentials, Comput. Math. Appl. 51 (2006), no. 9-10, 1395-1404.

12.

G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Second ed., Cambridge University Press, Cambridge, 1988.

13.

T. S. Hassan, Interval oscillation for second order nonlinear differential equations with a damping term, Serdica Math. J. 34 (2008), no. 4, 715-732.

14.

T. S. Hassan, L. Erbe, and A. Peterson, Forced oscillation of second order functional differential equations with mixed nonlinearities, Acta Mathematica Scientia 31B (2011), no. 2, 613-626.

15.

T. S. Hassan and Q. Kong, Interval criteria for forced oscillation of differential equations with p-Laplacian, damping, and mixed nonlinearities, Dynamic Systems & Applications 20 (2011), 279-294.

16.

A. G. Kartsatos, On the maintenance of oscillations of nth order equations under the effect of a small forcing term, J. Differential Equations 10 (1971), 355-363.

17.

A. G. Kartsatos, Maintenance of oscillations under the effect of a periodic forcing term, Proc. Amer. Math. Soc. 33 (1972), 377-383.

18.

M. S. Keener, On the solutions of certain linear nonhomogeneous second-order differ- ential equations, Applicable Anal. 1 (1971), no. 1, 57-63.

19.

Q. Kong, Interval criteria for oscillation of second-order linear ordinary differential equations, J. Math. Anal. Appl. 229 (1999), no. 1, 258-270.

20.

Q. Kong, Oscillation criteria for second order half-linear differential equations, Differential equations with applications to biology (Halifax, NS, 1997), 317-323, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999.

21.

Q. Kong and J. S. W. Wong, Oscillation of a forced second order differential equations with a deviating argument, Funct. Differ. Equ. 17 (2010), no. 1-2, 141-155.

22.

Q. Kong and B. G. Zhang, Oscillation of a forced second order nonlinear equation, Chinese Ann. Math. Ser. B 15 (1994), no. 1, 59-68.

23.

M. K. Kwong and J. S. W. Wong, Linearization of second order nonlinear oscillation theorems, Trans. Amer. Math. Soc. 279 (1983), no. 2, 705-722.

24.

A. H. Nasr, Sufficient conditions for the oscillation of forced super-linear second order differential equations with oscillatory potential, Proc. Amer. Math. Soc. 126 (1998), no. 1, 123-125.

25.

C. H. Ou and J. S. W. Wong, Forced oscillation of nth-order functional differential equations, J. Math. Anal. Appl. 262 (2001), no. 2, 722-731.

26.

Ch. G. Philos, Oscillation theorems for linear differential equations of second order, Arch. Math. (Basel) 53 (1989), no. 5, 482-492.

27.

S. M. Rankin, Oscillation theorems for second order nonhomogeneous linear differential equations, J. Math. Anal. Appl. 53 (1976), no. 3, 550-553.

28.

A. Skidmore and J. J. Bowers, Oscillatory behavior of solutions of y′' + p(x)y = f(x), J. Math. Anal. Appl. 49 (1975), 317-323.

29.

A. Skidmore and W. Leighton, On the differential equation y"+p(x)y = f(x), J. Math. Anal. Appl. 43 (1973), 46-55.

31.

Y. G. Sun and Q. Kong, Interval criteria for forced oscillation with nonlinearities given by Riemann-Stieltjes integrals, Comput. Math. Appl. 62 (2011), no. 1, 243-252.

32.

Y. G. Sun and F. W. Meng, Interval criteria for oscillation of second order differential equations with mixed nonlinearities, Appl. Math. Comp. 198 (2008), no. 1, 375-381.

33.

Y. G. Sun, C. H. Ou, and J. S. W. Wong, Interval oscillation theorems for a linear second-order differential equation, Comput. Math. Appl. 48 (2004), no. 10-11, 1693-1699.

34.

Y. G. Sun and J. S. W. Wong, Note on forced oscillation of nth-order sublinear differ- ential equations, J. Math. Anal. Appl. 298 (2004), no. 1, 114-119.

35.

Y. G. Sun and J. S. W. Wong, Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007), no. 1, 549-560.

37.

J. S. W. Wong, Second order nonlinear forced oscillations, SIAM J. Math. Anal. 19 (1988), no. 3, 667-675.

38.

J. S. W. Wong, Oscillation criteria for a forced second-order linear differential equation, J. Math. Anal. Appl. 231 (1999), no. 1, 235-240.

39.

Q. Yang, Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential, Appl. Math. Comput. 136 (2003), no. 1, 49-64.