JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVERGENCE OF DOUBLE SERIES OF RANDOM ELEMENTS IN BANACH SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONVERGENCE OF DOUBLE SERIES OF RANDOM ELEMENTS IN BANACH SPACES
Tien, Nguyen Duy; Dung, Le Van;
  PDF(new window)
 Abstract
For a double array of random elements in a -uniformly smooth Banach space, is an array of positive numbers, convergence of double random series , and strong law of large numbers as are established.
 Keywords
convergence of double random series;strong laws of large numbers;-uniformly smooth Banach spaces;double array of random elements;
 Language
English
 Cited by
 References
1.
L. V. Dung, Th. Ngamkham, N. D. Tien and A. I. Volodin, Marcinkiewicz-Zygmund type law of large numbers for double arrays of random elements in Banach spaces, Lobachevskii J. Math. 30 (2009), no. 4, 337-346. crossref(new window)

2.
L. V. Dung and N. D. Tien, Mean convergence theorems and weak laws of large numbers for double arrays of random elements in Banach spaces, Bull. Korean Math. Soc. 47 (2010), no. 3, 467{482.

3.
S. Gan, On almost sure convergence of weighted sums of random element sequences, Acta Math. Sci. Ser. B Engl. Ed. 30 (2010), no. 4, 1021-1028.

4.
J. I. Hong and J. Tsay, A strong law of large numbers for random elements in Banach spaces, Southeast Asian Bull. Math. 34 (2010), no. 2, 257-264.

5.
D. Landers and L. Rogge, Laws of large numbers for pairwise independent uniformly integrable random variables, Math. Nachr. 130 (1987), 189-192. crossref(new window)

6.
M. Ordonez Cabrera, Convergence of weighted sums of random variables and uniform integrability concerning the weights, Collect. Math. 45 (1994), no. 2, 121-132.

7.
G. Pisier, Probabilistic methods in the geometry of Banach spaces, Probability and analysis (Varenna, 1985), 167241, Lecture Notes in Math., 1206, Springer, Berlin, 1986.

8.
N. V. Quang, L. V. Thanh, and N. D. Tien, Almost sure convergence for double arrays of block-wise M-dependent random elements in Banach spaces, Georgian Mathematical Journal 18 (2011), 777-800. crossref(new window)

9.
A. Rosalsky and L. V. Thanh, Strong and weak laws of large numbers for double sums of independent random elements in Rademacher type p Banach spaces, Stoch. Anal. Appl. 24 (2006), no. 6, 1097-1117. crossref(new window)

10.
F. S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347-374. crossref(new window)

11.
U. Stadtmulle and L. V. Thanh, On the strong limit theorems for double arrays of blockwise M-dependent random variables, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 10, 19231934.

12.
C. Su and T. J. Tong, Almost sure convergence of the general Jamison weighted sum of B-valued random variables, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 1, 181-192. crossref(new window)

13.
N. D. Tien, On Kolmogorov's three series theorem and mean square convergence of martingales in a Banach space, Theory Probab. Appl. 24 (1980), no. 4, 797-808. crossref(new window)

14.
W. A. Woyczynski, Geometry and martingales in Banach spaces, ProbabilityWinter School (Proc. Fourth Winter School, Karpacz, 1975), pp. 229-275. Lecture Notes in Math., Vol. 472, Springer, Berlin, 1975.