JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED FOURIER-FEYNMAN TRANSFORM AND SEQUENTIAL TRANSFORMS ON FUNCTION SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZED FOURIER-FEYNMAN TRANSFORM AND SEQUENTIAL TRANSFORMS ON FUNCTION SPACE
Choi, Jae-Gil; Chang, Seung-Jun;
  PDF(new window)
 Abstract
In this paper we first investigate the existence of the generalized Fourier-Feynman transform of the functional F given by $$F(x)
 Keywords
generalized Brownian motion process;Paley-Wiener-Zygmund stochastic integral;cylinder functional;generalized Fourier-Feynman transform;sequential P-transform;sequential N-transform;
 Language
English
 Cited by
1.
Change of path formula on the function space with applications, Indagationes Mathematicae, 2014, 25, 3, 596  crossref(new windwow)
2.
Sequential transforms associated with Gaussian processes on function space, International Journal of Mathematics, 2016, 27, 04, 1650031  crossref(new windwow)
3.
L2-sequential transforms on function space, Journal of Mathematical Analysis and Applications, 2015, 421, 1, 625  crossref(new windwow)
4.
Generalized Analytic Fourier-Feynman Transform of Functionals in a Banach AlgebraℱA1,A2a,b, Journal of Function Spaces and Applications, 2013, 2013, 1  crossref(new windwow)
 References
1.
M. D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, Thesis, University of Minnesota, Minneapolis, 1972.

2.
R. H. Cameron and D. A. Storvick, An $L_{2}$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), no. 1, 1-30. crossref(new window)

3.
S. J. Chang, Conditional generalized Fourier-Feynman transform of functionals in a Fresnel type class, Commun. Korean Math. Soc. 26 (2011), no. 2, 273-289. crossref(new window)

4.
S. J. Chang, J. G. Choi, and H. S. Chung, Generalized analytic Feynman integral via function space integral of bounded cylinder functionals, Bull. Korean Math. Soc. 48 (2011), no. 3, 475{489.

5.
S. J. Chang, J. G. Choi, and D. Skoug, Integration by parts formulas involving gen- eralized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2925-2948. crossref(new window)

6.
S. J. Chang, J. G. Choi, and D. Skoug, Generalized Fourier-Feynman transforms, convolution products, and rst variations on function space, Rocky Mountain J. Math. 40 (2010), no. 3, 761-788. crossref(new window)

7.
S. J. Chang and D. M. Chung, Conditional function space integrals with applications, Rocky Mountain J. Math. 26 (1996), no. 1, 37-62. crossref(new window)

8.
S. J. Chang, H. S. Chung, and D. Skoug, Integral transforms of functionals in $L^{2}$($C_{a,b}$[0, T]), J. Fourier Anal. Appl. 15 (2009), no. 4, 441-462. crossref(new window)

9.
S. J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a rst variation on function space, Integral Transforms Spec. Funct. 14 (2003), no. 5, 375-393. crossref(new window)

10.
T. Huffman, C. Park, and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), no. 2, 661-673. crossref(new window)

11.
T. Huffman, C. Park, and D. Skoug, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), no. 2, 247-261. crossref(new window)

12.
T. Huffman, C. Park, and D. Skoug, Convolution and Fourier-Feynman transforms, Rocky Mountain J. Math. 27 (1997), no. 3, 827-841.

13.
G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), no. 1, 157-176. crossref(new window)

14.
G. W. Johnson and D. L. Skoug, An $L_{p}$ analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), no. 1, 103-127. crossref(new window)

15.
H. L. Royden, Real Analysis (Third edition), Macmillan, 1988.

16.
D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004), no. 3, 1147-1175. crossref(new window)

17.
J. Yeh, Singularity of Gaussian measures on function space induced by Brownian motion processes with non-stationary increments, Illinois J. Math. 15 (1971), 37-46.

18.
J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York, 1973.