JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONTROLLABILITY FOR NONLINEAR VARIATIONAL EVOLUTION INEQUALITIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONTROLLABILITY FOR NONLINEAR VARIATIONAL EVOLUTION INEQUALITIES
Park, Jong-Yeoul; Jeong, Jin-Mun; Rho, Hyun-Hee;
  PDF(new window)
 Abstract
In this paper we investigate the approximate controllability for the following nonlinear functional differential control problem: which is governed by the variational inequality problem with nonlinear terms.
 Keywords
approximate controllability;variational inequality;subdifferential operator;degree theory;
 Language
English
 Cited by
 References
1.
J. P. Aubin, Un theoreme de compasite, C. R. Acad. Sci. 256 (1963), 5042-5044.

2.
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach space, Nordhoff Leiden, Netherland, 1976.

3.
V. Barbu, Analysis and Control of Nonlinear In nite Dimensional Systems, Academic Press Limited, 1993.

4.
G. Di Blasio, K. Kunisch, and E. Sinestrari, $L^{2}$-regularity for parabolic partial integro- differential equations with delay in the highest-order derivatives, J. Math. Anal. Appl. 102 (1984), no. 1, 38-57. crossref(new window)

5.
P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer-verlag, Belin-Heidelberg-Newyork, 1967.

6.
J. M. Jeong, Y. C. Kwun, and J. Y. Park, Approximate controllability for semilinear retarded functional differential equations, J. Dynam. Control Systems 5 (1999), no. 3, 329-346. crossref(new window)

7.
J. M. Jeong and H. H. Roh, Approximate controllability for semilinear retarded systems, J. Math. Anal. Appl. 321 (2006), no. 2, 961-975. crossref(new window)

8.
J. L. Lions and E. Magenes, Problema aux limites non homogenes et applications, vol. 3, Dunod, Paris, 1968.

9.
K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim. 25 (1987), no. 3, 715-722. crossref(new window)

10.
H. Tanabe, Equations of Evolution, Pitman-London, 1979.

11.
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North- Holland, 1978.