JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A FAST NUMERICAL METHOD FOR SOLVING A REGULARIZED PROBLEM ASSOCIATED WITH OBSTACLE PROBLEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A FAST NUMERICAL METHOD FOR SOLVING A REGULARIZED PROBLEM ASSOCIATED WITH OBSTACLE PROBLEMS
Yuan, Daming; Li, Xi; Lei, Chengfeng;
  PDF(new window)
 Abstract
Kirsi Majava and Xue-Cheng Tai [12] proposed a modified level set method for solving a free boundary problem associated with unilateral obstacle problems. The proximal bundle method and gradient method were applied to solve the nonsmooth minimization problems and the regularized problem, respectively. In this paper, we extend this approach to solve the bilateral obstacle problems and employ Rung-Kutta method to solve the initial value problem derived from the regularized problem. Numerical experiments are presented to verify the efficiency of the methods.
 Keywords
Rung-Kutta method;level set method;obstacle problem;
 Language
English
 Cited by
 References
1.
D. Adalsteinsson and J. A. Sethian, The fast construction of extension velocities in level set methods, J. Comput. Phys. 148 (1999), no. 1, 2-22. crossref(new window)

2.
L. Brugnano and V. Casulli, Iterative solution of piecewise linear systems, SIAM J. Sci. Comput. 30 (2008), no. 1, 463-472. crossref(new window)

3.
R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equaton of mathematical physics, IBM J. Res. Dev. 11 (1928), no. 2, 215-234.

4.
G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, Germany, 1976.

5.
R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer, New York, 1984.

6.
R. Hoppe, Multigrid algorithms for variational inequalities, SIAM J. Numer. Anal. 24 (1987), 1046-1065. crossref(new window)

7.
R. Hoppe and R. Kornhuber, Adaptive multilevel methods for obstacle problems, SIAM J. Numer. Anal. 31 (1994), no. 2, 301-323. crossref(new window)

8.
S. Howison, F. Wilmott, and J. Dewynne, The Mathematics of Financial Derivative, Cambridge University Press, Cambridge, 1995.

9.
T. Karkkainen, K. Kunisch, and P. Tarvainen, Augmented Lagrangian active set methods for obstacle problems, J. Optim. Theory Appl. 119 (2003), no. 3, 499-533. crossref(new window)

10.
R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities I, Numer. Math. 69 (1994), no. 2, 167-184. crossref(new window)

11.
R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities II, Numer. Math. 72 (1996), no. 4, 481-499. crossref(new window)

12.
K. Majava and X.-C. Tai, A level set method for solving free boundary problems associated with obstacles, Int. J. Numer. Anal. Model. 1 (2004), no. 2, 157-171.

13.
S. Osher and R. Fedkiw, Level Set Method and Dynamic Implicit Surfaces, Springer, NewYork, 2000.

14.
S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Al- gorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988), no. 1, 12-49. crossref(new window)

15.
J. Rodrigues, Obstacle Problems in Mathematical Physics, Elsevier Science 1987.

16.
J. A. Sethian, Level Set Methods, Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Material Science, Cambridge University Press, Cambridge, 1996.

17.
J. A. Sethian, Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws, J. Differential Geom. 31 (1990), no. 1, 131-161.

18.
J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Nat. Acad. Sci. U.S.A. 93 (1996), no. 4, 1591-1596. crossref(new window)

19.
J. A. Sethian and J. D. Strain, Crystal growth and dendritic solidification, J. Comput. Phys. 98 (1992), no. 2, 231-253. crossref(new window)

20.
F. Wang and X. L. Cheng, An algorithm for solving the double obstacle problems, Appl. Math. Comput. 201 (2008), no. 1-2, 221-228. crossref(new window)

21.
F. Wang, W. M. Han, and X. L. Cheng, Discontinuous Galerkin methods for solving elliptic variational inequalities, SIAM J. Numer. Anal. 48 (2010), no. 2, 708-733. crossref(new window)

22.
L. Xue and X. L. Cheng, An algorithm for solving the obstacle problems, Comput. Math. Appl. 48 (2004), no. 10-11, 1651-1657. crossref(new window)

23.
Y. Zhang, Multilevel projection algorithm for solving obstacle problems, Comput. Math. Appl. 41 (2001), no. 12, 1505-1513. crossref(new window)