JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A REGULARIZED CORRECTION METHOD FOR ELLIPTIC PROBLEMS WITH A SINGULAR FORCE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A REGULARIZED CORRECTION METHOD FOR ELLIPTIC PROBLEMS WITH A SINGULAR FORCE
Kim, Hyea-Hyun;
  PDF(new window)
 Abstract
An approximation of singular source terms in elliptic problems is developed and analyzed. Under certain assumptions on the curve where the singular source is defined, the second order convergence in the maximum norm can be proved. Numerical results present its better performance compared to previously developed regularization techniques.
 Keywords
Dirac delta function;second order methods;immersed boundary;
 Language
English
 Cited by
 References
1.
J. T. Beale and A. T. Layton, On the accuracy of nite difference methods for elliptic problems with interfaces, Commun. Appl. Math. Comput. Sci. 1 (2006), 91-119. crossref(new window)

2.
D. Boffi and L. Gastaldi, A nite element approach for the immersed boundary method, Comput. & Structures 81 (2003), no. 8-11, 491-501. crossref(new window)

3.
D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001.

4.
E. Givelberg, Immersed nite element method, Preprint.

5.
R. J. LeVeque and Z. L. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994), no. 4, 1019-1044. crossref(new window)

6.
A. Mayo, The fast solution of Poisson's and the biharmonic equations on irregular regions, SIAM J. Numer. Anal. 21 (1984), no. 2, 285-299. crossref(new window)

7.
A. Mayo, Fast high order accurate solution of Laplace's equation on irregular regions, SIAM J. Sci. Statist. Comput. 6 (1985), no. 1, 144-157. crossref(new window)

8.
C. S. Peskin, Numerical analysis of blood ow in the heart, J. Computational Phys. 25 (1977), no. 3, 220-252. crossref(new window)

9.
C. S. Peskin, The immersed boundary method, Acta Numer. 11 (2002), 479-517. crossref(new window)

10.
A.-K. Tornberg and B. Engquist, Numerical approximations of singular source terms in differential equations, J. Comput. Phys. 200 (2004), no. 2, 462-488. crossref(new window)

11.
A.-K. Tornberg and B. Engquist, Regularization techniques for numerical approximation of PDEs with singularities, J. Sci. Comput. 19 (2003), no. 1-3, 527-552. crossref(new window)

12.
L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu, Immersed nite element method, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 21-22, 2051-2067, crossref(new window)