JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVERGENCE PROPERTIES OF THE PARTIAL SUMS FOR SEQUENCES OF END RANDOM VARIABLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONVERGENCE PROPERTIES OF THE PARTIAL SUMS FOR SEQUENCES OF END RANDOM VARIABLES
Wu, Yongfeng; Guan, Mei;
  PDF(new window)
 Abstract
The convergence properties of extended negatively dependent sequences under some conditions of uniform integrability are studied. Some sufficient conditions of the weak law of large numbers, the -mean convergence and the complete convergence for extended negatively dependent sequences are obtained, which extend and enrich the known results in the literature.
 Keywords
extended negative dependence random sequences;weak law of large numbers;p-mean convergence;complete convergence;uniform integrability;
 Language
English
 Cited by
1.
Complete convergence for Sung’s type weighted sums of END random variables, Journal of Inequalities and Applications, 2014, 2014, 1, 353  crossref(new windwow)
2.
Complete consistency for the estimator of nonparametric regression models based on extended negatively dependent errors, Statistics, 2015, 49, 2, 396  crossref(new windwow)
3.
Complete convergence for weighted sums of extended negatively dependent random variables, Communications in Statistics - Theory and Methods, 2017, 46, 3, 1433  crossref(new windwow)
4.
Complete Moment Convergence and Mean Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables, The Scientific World Journal, 2014, 2014, 1  crossref(new windwow)
5.
Complete Convergence Theorems for Extended Negatively Dependent Random Variables, Sankhya A, 2015, 77, 1, 1  crossref(new windwow)
6.
Convergence in p-mean for arrays of row-wise extended negatively dependent random variables, Acta Mathematica Hungarica, 2016, 150, 2, 346  crossref(new windwow)
7.
Complete convergence and complete moment convergence for arrays of rowwise END random variables, Glasnik Matematicki, 2014, 49, 2, 447  crossref(new windwow)
8.
Complete convergence and complete moment convergence for widely orthant dependent random variables*, Communications in Statistics - Theory and Methods, 2016, 0  crossref(new windwow)
9.
Complete convergence for weighted sums of END random variables and its application to nonparametric regression models, Journal of Nonparametric Statistics, 2016, 28, 4, 702  crossref(new windwow)
10.
Complete Moment Convergence for Weighted Sums of extended negatively dependent random variables, Communications in Statistics - Theory and Methods, 2016, 0  crossref(new windwow)
11.
The consistency of the nearest neighbor estimator of the density function based on WOD samples, Journal of Mathematical Analysis and Applications, 2015, 429, 1, 497  crossref(new windwow)
12.
The strong laws of large numbers for weighted sums of extended negatively dependent random variables, Communications in Statistics - Theory and Methods, 2016, 0  crossref(new windwow)
13.
Exponential probability inequality for $$m$$ m -END random variables and its applications, Metrika, 2016, 79, 2, 127  crossref(new windwow)
14.
Limiting behaviour for arrays of row-wise END random variables under conditions ofh-integrability, Stochastics An International Journal of Probability and Stochastic Processes, 2015, 87, 3, 409  crossref(new windwow)
 References
1.
D. M. Amini and A. Bozorgnia, Complete convergence for negatively dependent random variables, J. Appl. Math. Stochastic Anal. 16 (2003), no. 2, 121-126. crossref(new window)

2.
A. Bozorgnia, R. F. Patterson, and R. L. Taylor, Limit theorems for dependent random variables, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992), 1639-1650, de Gruyter, Berlin, 1996.

3.
T. K. Chandra, Uniform integrability in the Cesaro sense and the weak law of large numbers, Sankhya Ser. A 51 (1989), no. 3, 309-317.

4.
N. Ebrahimi and M. Ghosh, Multivariate negative dependence, Comm. Statist. A- Theory Methods 10 (1981), no. 4, 307-337. crossref(new window)

5.
D. K. Fuk and S. V. Nagaev, Probability inequalities for sums of independent random variables, Theory Probab. Appl. 16 (1971), no. 4, 643-660. crossref(new window)

6.
K. Joag-Dev and F. Proschan, Negative association of random variables with applications, Ann. Statist. 11 (1983), no. 1, 286-295. crossref(new window)

7.
M. H. Ko, K. H. Han, and T. S. Kim, Strong laws of large numbers for weighted sums of negatively dependent random variables, J. Korean Math. Soc. 43 (2006), no. 6, 1325- 1338. crossref(new window)

8.
M. H. Ko and T. S. Kim, Almost sure convergence for weighted sums of negatively orthant dependent random variables, J. Korean Math. Soc. 42 (2005), no. 5, 949-957. crossref(new window)

9.
B. Ko and Q. H. Tang, Sums of dependent nonnegative random variables with subexponential tails, J. Appl. Probab. 45 (2008), no. 1, 85-94. crossref(new window)

10.
L. Liu, Precise large deviations for dependent random variables with heavy tails, Statist. Probab. Lett. 79 (2009), no. 9, 1290-1298. crossref(new window)

11.
R. Pyke and D. Root, On convergence in r-mean of normalized partial sums, Ann. Math. Statist. 32 (1968), no. 9, 379-381.

12.
S. H. Sung, L. Supranee, and A. Volodin, Weak laws of large numbers for arrays under a condition of uniform integrability, J. Korean Math. Soc. 45 (2008), no. 1, 289-300. crossref(new window)

13.
R. L. Taylor, R. F. Patterson, and A. Bozorgnia, Weak laws of large numbers for arrays of rowwise negatively dependent random variables, J. Appl. Math. Stochastic Anal. 14 (2001), no. 3, 227-236. crossref(new window)

14.
R. L. Taylor, R. F. Patterson, and A. Bozorgnia, A strong law of large numbers for arrays of rowwise negatively dependent random variables, Stochastic Anal. Appl. 20 (2002), no. 3, 643-656. crossref(new window)

15.
Q. Y. Wu, Y. Q. Wang, and Y. C. Wu, On some limit theorems for sums of NA random matrix sequences, Chin. J. Appl. Probab. Stat. 22 (2006), no. 1, 56-62.