JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TETRAVALENT SYMMETRIC GRAPHS OF ORDER 9p
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TETRAVALENT SYMMETRIC GRAPHS OF ORDER 9p
Guo, Song-Tao; Feng, Yan-Quan;
  PDF(new window)
 Abstract
A graph is symmetric if its automorphism group acts transitively on the set of arcs of the graph. In this paper, we classify tetravalent symmetric graphs of order for each prime .
 Keywords
normal Cayley graph;symmetric graph;s-transitive graph;
 Language
English
 Cited by
 References
1.
Y. G. Baik, Y.-Q. Feng, H. S. Sim, and M. Y. Xu, On the normality of Cayley graphs of abelian groups, Algebra Colloq. 5 (1998), no. 3, 297-304.

2.
N. Biggs, Algebraic Graph Theory, Second ed., Cambridge University Press, Cambridge, 1993.

3.
C. Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971), 247-256. crossref(new window)

4.
Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory B 42 (1987), no. 2, 196-211. crossref(new window)

5.
H. J. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Group, Clarendon Press, Oxford, 1985.

6.
J. D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.

7.
Y.-Q. Feng and M. Y. Xu, Automorphism groups of tetravalent Cayley graphs on regular p-groups, Discrete Math. 305 (2005), no. 1-3, 354-360. crossref(new window)

8.
A. Gardiner and C. E. Praeger, On 4-valent symmetric graphs, European J. Combin. 15 (1994), no. 4, 375-381. crossref(new window)

9.
A. Gardiner and C. E. Praeger, A characterization of certain families of 4-valent symmetric graphs, European J. Combin. 15 (1994), no. 4, 383-397. crossref(new window)

10.
D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982.

11.
B. Huppert, Eudiche Gruppen I, Springer-Verlag, Berlin, 1967

12.
J. H. Kwak and J. M. Oh, One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 5, 1305-1320. crossref(new window)

13.
C. H. Li, On finite s-transitive graphs of odd order, J. Combin. Theory Ser. B 81 (2001), no. 2, 307-317. crossref(new window)

14.
C. H. Li, Z. P. Lu, and D. Marusic, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra 279 (2004), no. 2, 749-770. crossref(new window)

15.
C. H. Li, Z. P. Lu, and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theory Ser. B 96 (2006), no. 1, 164-181. crossref(new window)

16.
P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory 8 (1984), no. 1, 55-68. crossref(new window)

17.
B. D. Mckay, Transitive graphs with fewer than twenty vertices, Math. Comp. 33 (1979), no. 147, 1101-1121. crossref(new window)

18.
J. M. Oh and K. W. Hwang, Construction of one-regular graphs of valency 4 and 6, Discrete Math. 278 (2004), no. 1-3, 195-207. crossref(new window)

19.
D. J. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.

20.
B. O. Sabidussi, Vertex-transitive graphs, Monatsh. Math. 68 (1964), 426-438. crossref(new window)

21.
C. Q. Wang and M. Y. Xu, Non-normal one-regular and 4-valent Cayley graphs of dihedral groups $D_{2n}$, European J. Combin. 27 (2006), no. 5, 750-766. crossref(new window)

22.
C. Q. Wang and Z. Y. Zhou, 4-valent one-regular normal Cayley graphs of dihedral groups, Acta Math. Sin. Chin. Ser. 49 (2006), 669-678. crossref(new window)

23.
R. J. Wang and M. Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B 58 (1993), no. 2, 197-216. crossref(new window)

24.
S. Wilson and P. Potocnik, A census of edge-transitive tetravalent graphs, http://jan.ucc.nau.edu/ swilson/C4Site/index.html.

25.
J. Xu and M. Y. Xu, Arc-transitive Cayley graphs of valency at most four on abelian groups, Southeast Asian Bull. Math. 25 (2001), no. 2, 355-363. crossref(new window)

26.
M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998), no. 1-3, 309-319. crossref(new window)

27.
M. Y. Xu, A note on one-regular graphs of valency 4, Chinese Science Bull. 45 (2000), 2160-2162.

28.
M. Y. Xu, A note on permutation groups and their regular subgroups, J. Aust. Math. Soc. 85 (2008), no. 2, 283-287. crossref(new window)

29.
J.-X. Zhou, Tetravalent s-transitive graphs of order 4p, Discrete Math. 309 (2009), no. 20, 6081-6086. crossref(new window)

30.
J.-X. Zhou and Y.-Q. Feng, Tetravalent s-transitive graphs of order twice a prime power, J. Aust. Math. Soc. 88 (2010), no. 2, 277-288. crossref(new window)

31.
J.-X. Zhou and Y.-Q. Feng, Tetravalent one-regular graphs of order 2pq, J. Algebraic Combin. 29 (2009), no. 4, 457-471. crossref(new window)