JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ANISOTROPIC QUASILINEAR ELLIPTIC EQUATIONS WITH VARIABLE EXPONENT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ANISOTROPIC QUASILINEAR ELLIPTIC EQUATIONS WITH VARIABLE EXPONENT
Mihailescu, Mihai; Stancu-Dumitru, Denisa;
  PDF(new window)
 Abstract
We study some anisotropic boundary value problems involving variable exponent growth conditions and we establish the existence and multiplicity of weak solutions by using as main argument critical point theory.
 Keywords
variable exponent growth conditions;anisotropic equations;critical points;
 Language
English
 Cited by
 References
1.
D. E. Edmunds, J. Lang, and A. Nekvinda, On $L^{p(x)}$ norms, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1981, 219-225. crossref(new window)

2.
D. E. Edmunds and J. Rakosnik, Density of smooth functions in $W^{k,p(x)}$ $({\Omega})$, Proc. Roy. Soc. London Ser. A 437 (1992), no. 1899, 229-236. crossref(new window)

3.
D. E. Edmunds and J. Rakosnik, Sobolev embedding with variable exponent, Studia Math. 143 (2000), no. 3, 267-293.

4.
X. Fan, J. Shen, and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}$ $({\Omega})$, J. Math. Anal. Appl. 262 (2001), no. 2, 749-760. crossref(new window)

5.
X. L. Fan and D. Zhao, On the Spaces $L^{p(x)}$ $({\Omega})$ and $W^{m,p(x)}$ $({\Omega})$, J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. crossref(new window)

6.
I. Fragal`a, F. Gazzola, and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004), no. 5, 751-734.

7.
O. Kovacik and J. Rakosniık, On spaces$L^{p(x)}$ and $W^{1,p(x)}$, Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618.

8.
M. Mihailescu, On a class of nonlinear problems involving a p(x)-Laplace type operator, Czechoslovak Math. J. 58(133) (2008), no. 1, 155-172. crossref(new window)

9.
M. Mihailescu and G. Morosanu, Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions, Appl. Anal. 89 (2010), no. 2, 257-271. crossref(new window)

10.
M. Mihailescu and G. Morosanu, On an eigenvalue problem for an anisotropic elliptic equation involving variable exponents, Glasg. Math. J. 52 (2010), no. 3, 517-527. crossref(new window)

11.
M. Mihailescu, P. Pucci, and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), no. 1, 687-698. crossref(new window)

12.
M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no. 2073, 2625-2641. crossref(new window)

13.
J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Vol. 1034, Springer, Berlin, 1983.

14.
S. M. Nikol'skii, On imbedding, continuation and approximation theorems for differentiable functions of several variables, Russian Math. Surveys 16 (1961), 55-104. crossref(new window)

15.
P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Expository Lectures from the CBMS Regional Conference held at the University of Miami, American Mathematical Society, Providence, RI. 1984.

16.
J. Rakosnik, Some remarks to anisotropic Sobolev spaces. I, Beitrage Anal. 13 (1979), 55-68.

17.
J. Rakosnik, Some remarks to anisotropic Sobolev spaces. II, Beitrage Anal. 15 (1981), 127-140.

18.
M. Ruzicka, Electrorheological Fluids Modeling and Mathematical Theory, Springer- Verlag, Berlin, 2002.

19.
M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelberg, 1996.

20.
M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ric. Mat. 18 (1969), 3-24.

21.
L. Ven'-tuan, On embedding theorems for spaces of functions with partial derivatives of various degree of summability, Vestnik Leningrad. Univ. 16 (1961), 23-37.