JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SUMS OF (pr + 1)-TH POWERS IN THE POLYNOMIAL RING Fpm[T]
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SUMS OF (pr + 1)-TH POWERS IN THE POLYNOMIAL RING Fpm[T]
Car, Mireille;
  PDF(new window)
 Abstract
Let be an odd prime number and let F be a finite field with elements. We study representations and strict representations of polynomials [T] by sums of ( + 1)-th powers. A representation of [T] as a sum of -th powers of polynomials is strict if deg < + degM.
 Keywords
finite fields;polynomials;Waring's problem;
 Language
English
 Cited by
1.
Planar surfaces in positive characteristic, São Paulo Journal of Mathematical Sciences, 2016, 10, 1, 1  crossref(new windwow)
 References
1.
N. Bourbaki, Elements de mathematique, Fasc. XXIII, Livre II: Algebre. Chapitre 8: Modules et anneaux semi-simples. Nouveau tirage de l'edition de 1958. Actualites Scientifiques et Industrielles, No. 1261. Hermann, Paris, 1973.

2.
M. Car, New bounds on some parameters in the Waring problem for polynomials over a finite field, Finite fields and applications, 59-77, Contemp. Math., 461, Amer. Math. Soc., Providence, RI, 2008.

3.
M. Car, Sums of ($2^{r}$+ 1)-th powers of polynomials over a finite field of characteristic two, Port. Math., to appear

4.
M. Car, Sums of fourth powers of polynomials over a finite field of characteristic 3, Funct. Approx. Comment. Math. 38 (2008), part 2, 195-220.

5.
M. Car and L. Gallardo, Sums of cubes of polynomials, Acta Arith. 112 (2004), no. 1, 41-50. crossref(new window)

6.
G. Effinger and D. R. Hayes, Additive Number Theory of Polynomials over a Finite Field, Oxford Mathematical Monographs, Clarendon Pres, Oxford, 1991.

7.
W. J. Ellison, Waring's problem, Amer. Math. Monthly 78 (1971), no. 1, 10-36. crossref(new window)

8.
L. H. Gallardo, On the restricted Waring problem over $\mathbb{F}_{{2}^{n}}$[t], Acta Arith. 42 (2000), no. 2, 109-113.

9.
L. H. Gallardo, Every strict sum of cubes in $\mathbb{F}_{4}$[t] is a strict sum of 6 cubes, Port. Math. 65 (2008), no. 2, 227-236.

10.
L. H. Gallardo and D. R. Heath-Brown, Every sum of cubes in $\mathbb{F}_{2}$[t] is a strict sum of 6 cubes, Finite Fields Appl. 13 (2007), no. 4, 981-987. crossref(new window)

11.
L. H. Gallardo and L. N. Vaserstein, The strict Waring problem for polynomials rings, J. Number Theory 128 (2008), no. 12, 2963-2972. crossref(new window)

12.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 4th. Ed., 1960.

13.
J.-M. De Konninck and A. Mercier, 1001 problems in classical number theory, Trans. from the French by J.-M. De Konninck, (English), Providence, RI: (AMS) xii, (2007).

14.
R. M. Kubota, Waring's problem for $\mathbb{F}_{q}$[x], Dissertationes Math. (Rozprawy Mat.) 117 (1974), 60 pp.

15.
R. E. A. C. Paley, Theorems on polynomials in a Galois field, The Quarterly Journal of Mathematics. 4 (1933), 52-63. crossref(new window)

16.
C. Small, Sums of powers in large finite fields, Proc. Amer. Math. Soc. 65 (1977), no. 1, 35-36. crossref(new window)

17.
L. N. Vaserstein, Waring's problem for algebras over fields, J. Number Theory 26 (1987), no. 3, 286-298. crossref(new window)

18.
L. N. Vaserstein, Waring's problem for commutative rings, J. Number Theory 26 (1987), no. 3, 299-307. crossref(new window)

19.
L. N. Vaserstein, Sums of cubes in polynomial rings, Math. Comput. 56 (1991), no. 193, 349-357. crossref(new window)

20.
L. N. Vaserstein, Ramsey's theorem and Waring's problem for algebras over fields, The arithmetic of function fields (Columbus, OH, 1991), 435-441, Ohio State Univ. Math. Res. Inst. Publ., 2, de Gruyter, Berlin, 1992.

21.
Y.-R. Yu and T. Wooley, The unrestricted variant of Waring's problem in function fields, Funct. Approx. Comment. Math. 37 (2007), part 2, 285-291. crossref(new window)

22.
W. A. Webb, Waring's problem in GF[q, x], Acta Arith. 22 (1973), 207-220.

23.
T. Wooley, Large improvements in Waring's problem, Ann. of Math. (2) 135 (1992), no. 1, 131-164. crossref(new window)