JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SPATIAL DECAY BOUNDS FOR A TEMPERATURE DEPENDENT STOKES FLOW
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SPATIAL DECAY BOUNDS FOR A TEMPERATURE DEPENDENT STOKES FLOW
Song, Jong-Chul;
  PDF(new window)
 Abstract
This paper examines a temperature dependent Stokes flow in a semi-infinite cylinder. Under appropriate initial and boundary conditions the author establishes exponential decay of solutions in energy norm with distance from the finite end of the cylinder.
 Keywords
spatial decay bounds;differential inequality;a temperature dependent Stokes flow;
 Language
English
 Cited by
 References
1.
K. A. Ames, L. E. Payne, and P. W. Schaefer, Spatial decay estimates in time-dependent Stokes flow, SIAM J. Math. Anal. 24 (1993), no. 6, 1395-1413. crossref(new window)

2.
I. Babuoska and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), pp. 1-359. Academic Press, New York, 1972.

3.
C. O. Horgan, Recent developments concerning Saint-Venant's principle: an update, Appl. Mech. Rev. 42 (1989), no. 11, 295-303. crossref(new window)

4.
C. O. Horgan, Recent developments concerning Saint-Venant's principle: a second update, Appl. Mech. Rev. 49 (1996), 101-111. crossref(new window)

5.
C. O. Horgan and J. K. Knowles, Recent developments concerning Saint-Venant's principle, Adv. in Appl. Mech. 23 (1983), 179-69. crossref(new window)

6.
C. O. Horgan and L. T.Wheeler, Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow, SIAM J. Appl. Math. 35 (1978), no. 1, 97-116. crossref(new window)

7.
O. A. Ladyzhenskaya and V. A. Solonnikov, Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier-Stokes equations, Russ. Math. Surveys 28 (1973), 43-82.

8.
C. Lin and L. E. Payne, Spatial decay bounds in time-dependent pipe flow of an incom- pressible viscous fluid, SIAM J. Appl. Math. 65 (2004), no. 2, 458-474. crossref(new window)

9.
L. E. Payne, Isoperimetric inequalities and their applications, SIAM Rev. 9 (1967), 453-488. crossref(new window)

10.
L. E. Payne, A bound for the optimal constant in an inequality of Ladyzhenskaya and Solonnikov, IMA J. Appl. Math. 72 (2007), no. 5, 563-569. crossref(new window)

11.
L. E. Payne and J. C. Song, Spatial decay for a model of double diffusive convection in Darcy and Brinkman flows, Z. Angew. Math. Phys. 51 (2000), no. 6, 867-880. crossref(new window)

12.
L. E. Payne and J. C. Song, Spatial decay in a double diffusive convection problem in Darcy flow, J. Math. Anal. Appl. 330 (2007), no. 2, 864-875. crossref(new window)

13.
L. E. Payne and J. C. Song, Spatial decay bounds for double diffusive convection in Brinkman flow, J. Differential Equations 244 (2008), no. 2, 413-430. crossref(new window)

14.
J. C. Song, Improved decay estimates in time-dependent Stokes flow, J. Math. Anal. Appl. 288 (2003), no. 2, 505-517. crossref(new window)

15.
B. Straughan, Stability and Wave Motion in Porous Media, Springer, New York, 2008.