JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MOVING FRAMES ON GENERALIZED FINSLER STRUCTURES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MOVING FRAMES ON GENERALIZED FINSLER STRUCTURES
Sabau, Sorin V.; Shibuya, Kazuhiro; Shimada, Hideo;
  PDF(new window)
 Abstract
We study the relation between an R-Cartan structure an an (I, J, K)-generalized Finsler structure on a 3-manifold showing the difficulty in finding a general transformation that maps to . In some particular cases, the mapping can be uniquely determined by geometrical conditions. Moreover, we are led in this way to a negative answer to our conjecture in [12].
 Keywords
generalized Finsler structures;foliations;exterior differential systems;surface of revolution;
 Language
English
 Cited by
1.
Adapted metrics and Webster curvature in Finslerian 2-dimensional geometry, Chinese Annals of Mathematics, Series B, 2016, 37, 3, 419  crossref(new windwow)
 References
1.
D. Bao, S. S. Chern, and Z. Shen, An Introduction to Riemann Finsler Geometry, Springer, GTM 200, 2000.

2.
D. Bao, C. Robles, and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Differential Geom. 66 (2004), no. 3, 377-435.

3.
A. Besse, Manifolds all of whose Geodesics are Closed, Springer-Verlag, 1978.

4.
R. Bryant, Finsler structures on the 2-sphere satisfying K = 1, Finsler geometry (Seattle, WA, 1995), 27-41, Contemp. Math., 196, Amer. Math. Soc., Providence, RI, 1996.

5.
R. Bryant, Some remarks on Finsler manifolds with constant flag curvature, Houston J. Math. 28 (2002), no. 2, 221-262.

6.
R. Bryant, Private communication, January 2011.

7.
H. Geiges and J. Gonzalo, Contact geometry and complex surfaces, Invent. Math. 121 (1995), no. 1, 147-209. crossref(new window)

8.
H. Geiges and J. Gonzalo, Contact circles on 3-manifolds, J. Differential Geom. 46 (1997), no. 2, 236-286.

9.
H. Geiges and J. Gonzalo, Moduli of contact circles, J. Reine Angew. Math. 551 (2002), 41-85.

10.
V. Guillemin, The Radon transform on Zoll surfaces, Advances in Math. 22 (1976), no. 1, 85-119. crossref(new window)

11.
Th. A. Ivey and J. M. Landsberg, Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential systems, AMS, GSM 61, 2003.

12.
S. V. Sabau, K. Shibuya, and H. Shimada, On the existence of generalized unicorns on surfaces, Differential Geom. Appl. 28 (2010), no. 4, 406-435. crossref(new window)

13.
Z. Shen, Lectures on Finsler Geometry, World Scientific, 2001.

14.
K. Shiohama, T. Shioya, and M. Tanaka, The Geometry of Total Curvature on Complete Open Surfaces, Cambridge University Press, 2003.