JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REPRESENTATION THEOREMS FOR MULTIVALUED PRAMARTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REPRESENTATION THEOREMS FOR MULTIVALUED PRAMARTS
Akhiat, Fettah; Ezzaki, Fatima;
  PDF(new window)
 Abstract
Existence of pramarts selectors for multivalued pramart whose values are convex weakly compact subsets of a separable Banach space E (resp. subsets of a dual space ) are established. Representation theorems for multivalued pramarts are also presented.
 Keywords
multifunctions;Banach space;dual space;pramarts;subpramarts;pramarts selectors;
 Language
English
 Cited by
 References
1.
F. Akhiat, C. Castaing and F. Ezzaki, Some various convergence results for multivalued martingales, Adv. Math. Econ. 13 (2010), 1-33. crossref(new window)

2.
N. Bourbaki, Elements de mathematiques, Topologie Generale, Chaps. 1-4, Hermann, Paris. 1971.

3.
C. Castaing, F. Ezzaki, M. Lavie, and M. Saadoune, Weak star convergence of martin-gales in a dual space, Function spaces IX, 45-73, Banach Center Publ., 92, Polish Acad. Sci. Inst. Math., Warsaw, 2011.

4.
C. Castaing, F. Ezzaki, and K. Tahri, Convergence of multivalued pramarts, J. Nonlinear Convex Anal. 11 (2010), no. 2, 243-266.

5.
C. Castaing and M. Saadoune, Convergences in a dual space with applications to Fatou lemma, Adv. Math. Econ. 12 (2009), 23-69. crossref(new window)

6.
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lectures Notes, 580, Springer-Verlag, Berlin 1977.

7.
A. Choukairi-Dini, M-convergence, et regularite des martingales multivoques: epimartingales, J. Multivariate Anal. 33 (1990), no. 1, 49-71. crossref(new window)

8.
A. Choukairi-Dini, On almost sure convergence of vector valued pramarts and multivalued pramarts, J. Convex Anal. 3 (1996), no. 2, 245-254.

9.
L. Egghe, Stopping time techniques for analysts and probabilists, Cambridge Univ. Press, London and New York, 1984.

10.
L. Egghe,, Strong convergence of pramarts in Banach spaces, Canad. J. Math. 33 (1981), no. 2, 357-361. crossref(new window)

11.
C. Hess, On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence, J. Multivariate Anal. 39 (1991), no. 1, 175-201. crossref(new window)

12.
F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multi- valued functions, J. Multivariate Anal. 7 (1977), no. 1, 149-182. crossref(new window)

13.
S. Li and Y. Ogura, Convergnece of set valued sub-and supermartingales in the Kuratowski-Mosco sense, Ann. Prob. 26 (1998), no. 3, 1384-1402. crossref(new window)

14.
D. Q. Lu'u, Representations and regularity of multivalued martingales, Acta Math. Vietnam. 6 (1981), no. 2, 29-40.

15.
D. Q. Lu'u, On convergence of multivalued asymptotic martingales, Seminaire d'analyse convexe, Vol. 14 (Montpellier, 1984), Exp. No. 5, 23 pp., Univ. Sci. Tech. Languedoc, Montpellier, 1984.

16.
D. Q. Lu'u, Representations of multivalued (regular) uniform amarts, Seminaire d'analyse convexe, Vol. 14 (Montpellier, 1984), Exp. No. 9, 33 pp., Univ. Sci. Tech. Languedoc, Montpellier, 1984.

17.
J. Neveu, Convergence presque sˆur de martingales multivoques, Ann. Inst. H. Poincare Sect. B (N.S.) 8 (1972), no. 1, 1-7.

18.
M. Valadier, On conditional expectation of random sets, Ann. Mat. Pura Appl. (4) 126 (1980), 81-91. crossref(new window)

19.
Z. P. Wang and X. H. Xue, On convergence and closedness of multivalued martingales, Trans. Amer. Math. Soc. 341 (1994), no. 2, 807-827. crossref(new window)

20.
Z. P. Wang and X. H. Xue, Some remarks on pramarts and mils, Glasg. Math. J. 35 (1993), no. 2, 239-251. crossref(new window)