JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HOLOMORPHIC MEAN LIPSCHITZ FUNCTIONS ON THE UNIT BALL OF ℂn
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HOLOMORPHIC MEAN LIPSCHITZ FUNCTIONS ON THE UNIT BALL OF ℂn
Kwon, Ern Gun; Cho, Hong Rae; Koo, Hyungwoon;
  PDF(new window)
 Abstract
On the unit ball of , the space of those holomorphic functions satisfying the mean Lipschitz condition < is characterized by integral growth conditions of the tangential derivatives as well as the radial derivatives, where denotes the modulus of continuity defined in terms of the unitary transformations of .
 Keywords
mean Lipschitz condition;Besov space;mean modulus of continuity;
 Language
English
 Cited by
1.
Zygmund Type Mean Lipschitz Spaces on the Unit Ball of ℂ n, Potential Analysis, 2014, 41, 2, 543  crossref(new windwow)
 References
1.
P. Ahern and J. Bruna, Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of $C^{n}$, Rev. Mat. Iberoam. 4 (1988), no. 1, 123-153.

2.
P. Ahern and W. Cohn, Besov spaces, Sobolev spaces, and Cauchy integrals, Michigan Math. J. 39 (1992), no. 2, 239-261. crossref(new window)

3.
N. Arcozzi, R. Rochberg, and E. Sawyer, Carleson measures and interpolating sequences for Besov spaces on complex balls, Mem. Amer. Math. Soc. 182 (2006), no. 859, 1-163.

4.
P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.

5.
K. M. Dyakonov, Besov spaces and outer functions, Michigan Math. J. 45 (1998), no. 1, 143-157. crossref(new window)

6.
G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), no. 1, 403-439. crossref(new window)

7.
M. Jevtic and M. Pavlovic, On M-harmonic Bloch space, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1385-1392.

8.
H. T. Kaptanoglu, Carleson measures for Besov spaces on the ball with applications, J. Funct. Anal. 250 (2007), no. 2, 483-520. crossref(new window)

9.
M. Pavlovic, Lipschitz spaces and spaces of harmonic functions in the unit disc, Michigan Math. J. 35 (1988), no. 2, 301-311. crossref(new window)

10.
M. Pavlovic, On the moduli of continuity of Hp functions with 0 < p < 1, Proc. Edinb. Math. Soc. (2) 35 (1992), no. 1, 89-100. crossref(new window)

11.
Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer-Verlag, 1992.

12.
E. M. Stein, Singular Integrals and Differentiability Properties of functions, Princeton University Press, New Jersey, 1970.