JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON GI-FLAT MODULES AND DIMENSIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON GI-FLAT MODULES AND DIMENSIONS
Gao, Zenghui;
  PDF(new window)
 Abstract
Let R be a ring. A right R-module M is called GI-flat if for every Gorenstein injective left R-module G. It is shown that GI-flat modules lie strictly between flat modules and copure flat modules. Suppose R is an -FC ring, we prove that a finitely presented right R-module M is GI-flat if and only if M is a cokernel of a Gorenstein flat preenvelope K F of a right R-module K with F flat. Then we study GI-flat dimensions of modules and rings. Various results in [6] are developed, some new characterizations of von Neumann regular rings are given.
 Keywords
Gorenstein injective module;GI-flat module;GI-flat dimension;n-FC ring;Gorenstein flat preenvelope;
 Language
English
 Cited by
 References
1.
D. Bennis, A note on Gorenstein flat dimension, Algebra Colloq. 18 (2011), no. 1, 155-161. crossref(new window)

2.
D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra 210 (2007), no. 2, 437-445. crossref(new window)

3.
H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.

4.
L. W. Christensen, Gorenstein Dimensions, Lecture Notes in Math., 1747, Springer- Verlag, Berlin, 2000.

5.
R. R. Colby, Rings which have flat injective modules, J. Algebra 35 (1975), 239-252. crossref(new window)

6.
N. Q. Ding and J. L. Chen, The flat dimensions of injective modules, Manuscripta Math. 78 (1993), no. 2, 165-177. crossref(new window)

7.
N. Q. Ding and J. L. Chen, On copure flat modules and flat resolvents, Comm. Algebra 24 (1996), no. 3, 1071-1081. crossref(new window)

8.
N. Q. Ding and J. L. Chen, Coherent rings with finite self-FP-injective dimension, Comm. Algebra 24 (1996), no. 9, 2963-2980. crossref(new window)

9.
E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, flat resolvents and dimensions, Comment. Math. Univ. Carolin. 34 (1993), no. 2, 203-211.

10.
E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. crossref(new window)

11.
E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin, 2000.

12.
E. E. Enochs, O. M. G. Jenda, and J. A. Lopez-Ramos, The existence of Gorenstein flat covers, Math. Scand. 94 (2004), no. 1, 46-62.

13.
E. E. Enochs, O. M. G. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1-9.

14.
C. Faith, Algebra I: Rings, Modules and Categories, Springer, Berlin-Heidelberg-New York, 1981.

15.
D. J. Fieldhouse, Character modules, dimension and purity, GlasgowMath. J. 13 (1972), 144-146.

16.
Z. H. Gao, On GI-injective modules, Comm. Algebra 40 (2012), no. 10, 3841-3858. crossref(new window)

17.
H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. crossref(new window)

18.
L. X. Mao and N. Q. Ding, Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 7 (2008), no. 4, 491-506. crossref(new window)

19.
J. J. Rotman, An Introduction to Homological Algebra, Academic Press, 1979.

20.
R. Sazeedeh, Strongly torsion free, copure flat and Matlis reflexive modules, J. Pure Appl. Algebra 192 (2004), no. 1-3, 265-274. crossref(new window)

21.
J. Z. Xu, Flat Covers of Modules, Lecture Notes in Math., 1634, Springer-Verlag, Berlin, 1996.

22.
X. Y. Yang and Z. K. Liu, Strongly Gorenstein projective, injective and flat modules, J. Algebra 320 (2008), no. 7, 2659-2674. crossref(new window)