JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXISTENCE AND CONTROLLABILITY RESULTS FOR NONDENSELY DEFINED STOCHASTIC EVOLUTION DIFFERENTIAL INCLUSIONS WITH NONLOCAL CONDITIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXISTENCE AND CONTROLLABILITY RESULTS FOR NONDENSELY DEFINED STOCHASTIC EVOLUTION DIFFERENTIAL INCLUSIONS WITH NONLOCAL CONDITIONS
Ni, Jinbo; Xu, Feng; Gao, Juan;
  PDF(new window)
 Abstract
In this paper, we investigate the existence and controllability results for a class of abstract stochastic evolution differential inclusions with nonlocal conditions where the linear part is nondensely defined and satisfies the Hille-Yosida condition. The results are obtained by using integrated semigroup theory and a fixed point theorem for condensing map due to Martelli.
 Keywords
existence;controllability;stochastic inclusion;integrated semigroup;nondensely defined operator;integral solution;
 Language
English
 Cited by
 References
1.
N. Abada, M. Benchohra, and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations 246 (2009), no. 10, 3834-3863. crossref(new window)

2.
M. Adimy, H. Bouzahir, and K. Ezzinbi, Existence for a class of partial functional differential equations with infinite delay, Nonlinear Anal. 46 (2001), no. 1, 91-112. crossref(new window)

3.
N. U. Ahmed, Nonlinear stochastic differential inclusions on Bananch space, Stochastic Anal. Appl. 12 (1994), 1-10. crossref(new window)

4.
W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), no. 3, 327-352. crossref(new window)

5.
W. Arendt, Resolvent positive operators, Proc. London Math. Soc. (3) 54 (1987), no. 2, 321-349. crossref(new window)

6.
P. Balasubramaniam, Existence of solutions of functional stochastic differential inclusions, Tamkang J. Math. 33 (2002), no. 1, 35-43.

7.
P. Balasubramaniam, S. K. Ntouyas, and D. Vinayagam, Existence of solutions of semi-linear stochastic delay evolution inclusions in a Hilbert space, J. Math. Anal. Appl. 305 (2005), no. 2, 438-451. crossref(new window)

8.
P. Balasubramaniam and S. K. Ntouyas, Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space, J. Math. Anal. Appl. 324 (2006), no. 1, 161-176. crossref(new window)

9.
J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Dekker, New York, 1980.

10.
M. Benchohra, E. P. Gatsori, J. Henderson, and S. K. Ntouyas, Nondensely defined evolution impulsive differential inclusions with nonlocal conditions, J. Math. Anal. Appl. 286 (2003), no. 1, 307-325. crossref(new window)

11.
T. Caraballo, K. Liu, and A. Truman, Stochastic functional partial differential equations: existence, uniqueness and asymptotic decay property, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456 (2000), no. 1999, 1755-1082.

12.
G. Da Prato and E. Sinestrari, Differential operators with nondense domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 2, 285-344.

13.
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.

14.
K. Deimling, Multivalued Differential Equations, de Gruyter, Berlin, 1992.

15.
K. Ezzinbi and J. Liu, Nondensely defined evolution equations with nonlocal conditions, Math. Comput. Modelling 36 (2002), no. 9-10, 1027-1038. crossref(new window)

16.
E. P. Gatsori, Controllability results for nondensely defined evolution differential inclu-sions with nonlocal conditions, J. Math. Anal. Appl. 297 (2004), no. 1, 194-211. crossref(new window)

17.
V. Kavitha and M. Mallika Arjunan, Controllability of non-densely defined impulsive neutral functional differential systems with infinite delay in Banach spaces, Nonlinear Anal. Hybrid Syst. 4 (2010), no. 3, 441-450. crossref(new window)

18.
H. Kellerman and M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989), no. 1, 160-180. crossref(new window)

19.
A. Lasota and Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.

20.
Y. Li and B. Liu, Existence of solution of nonlinear neutral stochastic differential in-clusions with infinite delay, Stochastic Anal. Appl. 25 (2007), no. 2, 397-415. crossref(new window)

21.
M. Martelli, A Rothe's type theorem for non-compact acyclic-valued map, Boll, Un. Mat. Ital. (4) 11 (1975), no. 3, 70-76.

22.
H. R. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl. 152 (1990), no. 2, 416-477. crossref(new window)

23.
H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations 3 (1990), no. 6, 1035-1066.

24.
R. Subalakshmi and K. Balachandran, Approximate controllability of nonlinear sto-chastic impulsive integrodifferential systems in Hilbert spaces, Chaos Solitons Fractals 42 (2009), no. 4, 2035-2046. crossref(new window)

25.
R. Subalakshmi, K. Balachandran, and J. Y. Park, Controllability of semilinear stochastic functional integrodifferential systems in Hilbert spaces, Nonlinear Anal. Hybrid Syst. 3 (2009), no. 1, 39-50. crossref(new window)

26.
F. Wei and K. Wang, The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay, J. Math. Anal. Appl. 331 (2007), no. 1, 516-531. crossref(new window)