JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVOLUTION SUMS ARISING FROM DIVISOR FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONVOLUTION SUMS ARISING FROM DIVISOR FUNCTIONS
Kim, Aeran; Kim, Daeyeoul; Yan, Li;
  PDF(new window)
 Abstract
Let denote the sum of the sth powers of the positive divisors of a positive integer N and let $\tilde{\sigma}_s(N)
 Keywords
Weierstrass functions;convolution sums;
 Language
English
 Cited by
1.
ON THE CONVOLUTION SUMS OF CERTAIN RESTRICTED DIVISOR FUNCTIONS,;;;

호남수학학술지, 2013. vol.35. 2, pp.251-302 crossref(new window)
2.
CONVOLUTION SUMS OF ODD AND EVEN DIVISOR FUNCTIONS,;

호남수학학술지, 2013. vol.35. 3, pp.445-506 crossref(new window)
3.
CONVOLUTION SUMS AND THEIR RELATIONS TO EISENSTEIN SERIES,;;;

대한수학회보, 2013. vol.50. 4, pp.1389-1413 crossref(new window)
4.
A REMARK OF ODD DIVISOR FUNCTIONS AND WEIERSTRASS ℘-FUNCTIONS,;;;

호남수학학술지, 2014. vol.36. 1, pp.55-66 crossref(new window)
5.
CERTAIN COMBINATORIC CONVOLUTION SUMS AND THEIR RELATIONS TO BERNOULLI AND EULER POLYNOMIALS,;;;

대한수학회지, 2015. vol.52. 3, pp.537-565 crossref(new window)
1.
A REMARK OF ODD DIVISOR FUNCTIONS AND WEIERSTRASS ℘-FUNCTIONS, Honam Mathematical Journal, 2014, 36, 1, 55  crossref(new windwow)
2.
ON THE CONVOLUTION SUMS OF CERTAIN RESTRICTED DIVISOR FUNCTIONS, Honam Mathematical Journal, 2013, 35, 2, 251  crossref(new windwow)
3.
CERTAIN COMBINATORIC CONVOLUTION SUMS AND THEIR RELATIONS TO BERNOULLI AND EULER POLYNOMIALS, Journal of the Korean Mathematical Society, 2015, 52, 3, 537  crossref(new windwow)
4.
CONVOLUTION SUMS OF ODD AND EVEN DIVISOR FUNCTIONS, Honam Mathematical Journal, 2013, 35, 3, 445  crossref(new windwow)
5.
Convolution identities for twisted Eisenstein series and twisted divisor functions, Fixed Point Theory and Applications, 2013, 2013, 1, 81  crossref(new windwow)
6.
Combinatorial convolution sums derived from divisor functions and Faulhaber sums, Glasnik Matematicki, 2014, 49, 2, 351  crossref(new windwow)
7.
CONVOLUTION SUMS AND THEIR RELATIONS TO EISENSTEIN SERIES, Bulletin of the Korean Mathematical Society, 2013, 50, 4, 1389  crossref(new windwow)
 References
1.
A. Alaca, S. Alaca, and K. S. Williams, The convolution sum ${\Sigma}_{m, Canad. Math. Bull. 51 (2008), no. 1, 3-14. crossref(new window)

2.
A. Alaca, S. Alaca, and K. S. Williams, The convolution sums ${\Sigma}_{l+24m=n}{\sigma}(l){\sigma}(m)$ and ${\Sigma}_{3l+8m=n}{\sigma}(l){\sigma}(m)$, Math. J. Okayama Univ. 49 (2007), 93-111.

3.
B. C. Berndt, Ramanujan's Notebooks. Part II, Springer-Verlag, New York, 1989.

4.
B. Cho, D. Kim, and J.-K. Koo, Divisor functions arising from q-series, Publ. Math. Debrecen 76 (2010), no. 3-4, 495-508.

5.
B. Cho, D. Kim, and J.-K. Koo , Modular forms arising from divisor functions, J. Math. Anal. Appl. 356 (2009), no. 2, 537-547. crossref(new window)

6.
F. Diamond and J. Shurman, A First Course in Modular Forms, Springer-Verlag, 2005.

7.
L. E. Dickson, History of the Theory of Numbers. Vol. I: Divisibility and Primality, Chelsea Publishing Co., New York 1966.

8.
N. J. Fine, Basic Hypergeometric Series and Applications, American Mathematical Society, Providence, RI, 1988.

9.
J. W. L. Glaisher, On the square of the series in which the coecients are the sums of the divisors of the exponents, Mess. Math. 14 (1884), 156-163.

10.
J. W. L. Glaisher, On certain sums of products of quantities depending upon the divisors of a number, Mess. Math. 15 (1885), 1-20.

11.
J. W. L. Glaisher, Expressions for the five powers of the series in which the coeffcients are the sums of the divisors of the exponents, Mess. Math. 15 (1885), 33-36.

12.
H. Hahn, Convolution sums of some functions on divisors, Rocky Mountain J. Math. 37 (2007), no. 5, 1593-1622. crossref(new window)

13.
J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, Number theory for the millennium, II (Urbana, IL, 2000), 229-274, A K Peters, Natick, MA, 2002.

14.
D. Kim and M. Kim, Divisor functions and Weierstrass functions arising from q series, Bull. Korean Math. Soc. 49 (2012), no. 4, 693-704. crossref(new window)

15.
M.-S. Kim, A p-adic view of mutiple sums of powers, Int. J. Number Theory 7 (2011), no. 8, 2273-2288. crossref(new window)

16.
N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1993.

17.
S. Lang, Elliptic Functions, Addison-Wesly, 1973.

18.
G. Melfi, On Some Modular Identities, Number theory (Eger, 1996), 371-382, de Gruyter, Berlin, 1998.

19.
J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, 1994.

20.
K. S. Williams, Number Theory in the Spirit of Liouville, London Mathematical Society, Student Texts 76, Cambridge, 2011.