JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME HYPERBOLIC SPACE FORMS WITH FEW GENERATED FUNDAMENTAL GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME HYPERBOLIC SPACE FORMS WITH FEW GENERATED FUNDAMENTAL GROUPS
Cavicchioli, Alberto; Molnar, Emil; Telloni, Agnese I.;
  PDF(new window)
 Abstract
We construct some hyperbolic hyperelliptic space forms whose fundamental groups are generated by only two or three isometries. Each occurring group is obtained from a supergroup, which is an extended Coxeter group generated by plane re ections and half-turns. Then we describe covering properties and determine the isometry groups of the constructed manifolds. Furthermore, we give an explicit construction of space form of the second smallest volume nonorientable hyperbolic 3-manifold with one cusp.
 Keywords
hyperbolic 3-manifold;hyperelliptic involution;cyclic branched covering;Heegaard diagram;hyperbolic orbifold;fundamental group;isometry group;
 Language
English
 Cited by
 References
1.
C. Adams, The noncompact hyperbolic 3-manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987), no. 4, 601-606.

2.
I. Agol, The minimal volume orientable hyperbolic 2-cusped 3-manifolds, Proc. Amer. Math. Soc. 138 (2010), no. 10, 3723-3732. crossref(new window)

3.
J. S. Birman and H. M. Hilden, Heegaard splittings of branched coverings of $\mathbb{S}3$, Trans. Amer. Math. Soc. 213 (1975), 315-352.

4.
P. J. Callahan, M. V. Hildebrand, and J. R. Weeks, A census of cusped hyperbolic 3-manifolds, Math. Comp. 68 (1999), no. 225, 321-332. crossref(new window)

5.
M. Cardenas, F. F. Lasheras, A. Quintero, and D. Repovs, One-relator groups and proper 3-realizability, Rev. Mat. Iberoam. 25 (2009), no. 2, 739-756.

6.
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th edition, Ergeb. der Math., Neue Folge Ed., 14, Springer Verlag, Berlin-New York, 1960.

7.
H. M. Farkas and I. Kra, Riemann Surfaces, Springer Verlag, Berlin, 1992.

8.
A. T. Fomenko and S. V. Matveev, Algorithmic and Computer Methods for Three- Manifolds, Math. and Its Appl. 425 Kluwer Acad. Publ., Dordrecht-Boston-London, 1997.

9.
H. Helling, A. C. Kim, and J. L. Mennicke, Some honey-combs in hyperbolic 3-space, Comm. Algebra 23 (1995), no. 14, 5169-5206. crossref(new window)

10.
H. Helling, A. C. Kim, and J. L. Mennicke , A geometric study of Fibonacci groups, J. Lie Theory 8 (1998), no. 1, 1-23.

11.
F. Lanner, On complexes with transitive groups of automorphisms, Lunds Univ. Math. Sem. 11 (1950), 1-71.

12.
V. S. Makarov, Geometric methods for constructing discrete isometry groups of Lobaschevskian space, Viniti, Itogi Nauki i Techniki, Problemy Geometrii 15 (1983), 3-59 (In Russian).

13.
B. Maskit, On Poincare's theorem for fundamental polygons, Advances in Math. 7 (1971), 219-230. crossref(new window)

14.
A. D. Mednykh, Three-dimensional hyperelliptic manifolds, Annals of Global Analysis and Geometry 8 (1990), 13-19. crossref(new window)

15.
A. Mednykh and M. Reni, Twofold unbranched coverings of genus two 3-manifolds are hyperelliptic, Israel J. Math. 123 (2001), 149-155. crossref(new window)

16.
E. Molnar, Space forms and fundamental polyhedra, Proceedings of the conference on differential geometry and its applications, Part 1 (Noe Mesto na Morave, 1983), 91-103, Charles Univ., Prague, 1984.

17.
E. Molnar, Minimal presentation of the 10 compact Euclidean space forms by fundamental domains, Studia Sci. Math. Hungar. 22 (1987), no. 1-4, 19-51.

18.
E. Molnar , Two hyperbolic football manifolds, Differential geometry and its applications (Dubrovnik, 1988), 217-241, Univ. Novi Sad, Novi Sad, 1989.

19.
E. Molnar, Polyhedron complexes with simply transitive group actions and their realizations, Acta Math. Hungar. 59 (1992), no. 1-2, 175-216. crossref(new window)

20.
M. Reni, The isometry groups of genus 2 hyperbolic 3-manifolds, Kobe J. Math. 15 (1998), no. 1, 77-84.

21.
M. Takahashi, An alternative proof of Birman- Hilden- Viro's theorem, Tsukuba J. Math. 2 (1978), 27-34.

22.
W. P. Thurston, Three-Dimensional Geometry and Topology, (S. Levy ed.), Princeton Univ. Press, Princeton, N.J., 1997.

23.
A. Yu. Vesnin and A. D. Mednykh, Three-dimensional hyperbolic manifolds of small volume with three hyperelliptic involutions, Siberian Math. Journal 40 (1999), no. 5, 873-886. crossref(new window)

24.
E. B. Vinberg and O. V. Shvartsman, Discrete groups of motions of spaces of constant curvature, Geometry, II, 139-248, Encyclopaedia Math. Sci., 29, Springer, Berlin, 1993. crossref(new window)

25.
J. Weeks, SnapPea: A computer program for creating and studying hyperbolic 3- manifolds, www.geometrygames.org.

26.
J. A.Wolf, Spaces of Constant Curvature, Univ. of California, Berkeley, California, 1972; Russian translation: Izd. "Nauka", Moskow, 1982.