JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE CUSP STRUCTURE OF THE PARAMODULAR GROUPS FOR DEGREE TWO
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE CUSP STRUCTURE OF THE PARAMODULAR GROUPS FOR DEGREE TWO
Poor, Cris; Yuen, David S.;
  PDF(new window)
 Abstract
We describe the one-dimensional and zero-dimensional cusps of the Satake compactification for the paramodular groups in degree two for arbitrary levels. We determine the crossings of the one-dimensional cusps. Applications to computing the dimensions of Siegel modular forms are given.
 Keywords
paramodular;Satake compactification;
 Language
English
 Cited by
1.
Cuspidality in higher genus, International Journal of Number Theory, 2016, 12, 08, 2043  crossref(new windwow)
2.
Jacobi forms that characterize paramodular forms, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2013, 83, 1, 111  crossref(new windwow)
 References
1.
S. Bocherer and T. Ibukiyama, Surjectivity of Siegel $\phi$-operator for square free level and small weight, Annales de l'institut Fourier 62 (2012), no. 1, 121-144. crossref(new window)

2.
A. Brumer and K. Kramer, Paramodular abelian varieties of odd conductor, arXiv: 1004.4699

3.
U. Christian, Einfuhrung in die Theorie der paramodularen Gruppen, Math. Ann. 168 (1967), 59-104. crossref(new window)

4.
F. Diamond and J. Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, 228. Springer-Verlag, New York, 2005. xvi+436 pp.

5.
E. Freitag, Siegelsche Modulfunktionen, Grundlehren der mathematischen Wissenschaften, Band 254, Berlin-Heidelberg-New York, Springer-Verlag, 1983.

6.
V. Gritsenko, Irrationality of the moduli spaces of polarized abelian surfaces, Internat. Math. Res. Notices 1994 (1994), no. 6, 235 ff., approx. 9 pp.

7.
V. Gritsenko and K. Hulek, Minimal Siegel modular threefolds, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 3, 461-485. crossref(new window)

8.
T. Ibukiyama, On some alternating sum of dimensions of Siegel cusp forms of general degree and cusp configurations, J. Fac. Sci. Univ. Tokyo Sec. IA Math. 40 (1993), no. 2, 245-283.

9.
T. Ibukiyama, Dimension formulas of Siegel modular forms of weight 3 and supersingular abelian surfaces, Siegel Modular Forms and Abelian Varieties, Proceedings of the 4-th Spring Conference on Modular Forms and Related Topics (2007), 39-60.

10.
T. Ibukiyama, On relations of dimensions of automorphic forms of Sp(2,R) and its compact twist Sp(2) (I), Automorphic forms and number theory (Sendai, 1983), 7-30, Adv. Stud. Pure Math., 7, North-Holland, Amsterdam, 1985.

11.
T. Ibukiyama and H. Kitayama, Dimensions of paramodular cusp forms for squarefree levels, preprint.

12.
T. Ibukiyama, C. Poor, and D. Yuen, Jacobi forms that characterize paramodular forms, preprint, 2011.

13.
J.-I. Igusa, Theta Functions, Die Grundlehren der mathematischen Wissenschaften, Band 194, Springer-Verlag, New York-Heidelberg, 1972.

14.
H. Reefschlager, Berechnung der Anzahl der 1-Spitzen der Paramodularen Gruppen 2- ten Grades, Dissertation, Georg-August-Universitat zu Gottingen, 1973.

15.
B. Roberts and R. Schmidt, Local Newforms for GSp(4), Springer Lecture Note in Mathematics, vol. 1918, Springer-Verlag, 2007.

16.
I. Satake, Compactification de espaces quotients de Siegel II, Seminaire Cartan, E. N. S., 1957/58, Exposee 13, 1-10.

17.
I. Satake , Loperateur $\phi$, Seminaire Cartan, E. N. S., 1957/58, Exposee 14, 1-18.

18.
I. Satake, Surjectivite globale de operateur $\phi$, Seminaire Cartan, E. N. S., 1957/58, Exposee 16, 1-17.

19.
C. Siegel, Moduln Abelscher Funktionen, Nachrichten der Akademie der Wissenschaften in Gottingen, Mathematisch-physikalische Klasse. 25 (1960), 365-427.