JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TIME SCALES INTEGRAL INEQUALITIES FOR SUPERQUADRATIC FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TIME SCALES INTEGRAL INEQUALITIES FOR SUPERQUADRATIC FUNCTIONS
Baric, Josipa; Bibi, Rabia; Bohner, Martin; Pecaric, Josip;
  PDF(new window)
 Abstract
In this paper, two different methods of proving Jensen`s inequality on time scales for superquadratic functions are demonstrated. Some refinements of classical inequalities on time scales are obtained using properties of superquadratic functions and some known results for isotonic linear functionals.
 Keywords
time scales;superquadratic functions;Jensen`s inequality;Hlder`s inequality;Minkowski`s inequality;Jessen-Mercer`s inequality;Slater`s inequality;Hermite-Hadamard`s inequality;
 Language
English
 Cited by
1.
Time scale Hardy-type inequalities with ‘broken’ exponent p, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
2.
ON REFINEMENTS OF HÖLDER'S INEQUALITY II, East Asian mathematical journal , 2016, 32, 1, 27  crossref(new windwow)
 References
1.
S. Abramovich, S. Banic, M. Matic, and J. Pecaric, Jensen-Steffensen's and related inequalities for superquadratic functions, Math. Inequal. Appl. 11 (2008), no. 1, 23-41.

2.
S. Abramovich, J. Baric, and J. Pecaric, A variant of Jessen's inequality of Mercer's type for superquadratic functions, J. Inequal. Pure Appl. Math. 9 (2008), no. 3, Article 62, 13 pages.

3.
S. Abramovich, G. Jameson, and G. Sinnamon, Inequalities for averages of convex and superquadratic functions, J. Inequal. Pure Appl. Math. 5 (2004), no. 4, Article 91, 14 pp.

4.
S. Abramovich, Refining Jensen's inequality, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 47(95) (2004), no. 1-2, 3-14.

5.
R. P. Agarwal, M. Bohner, and A. Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl. 4 (2001), no. 4, 535-557.

6.
M. Anwar, R. Bibi, M. Bohner, and J. Pecaric, Integral inequalities on time scales via the theory of isotonic linear functionals, Abstr. Appl. Anal. 2011 (2011), Art. ID 483595, 16 pp.

7.
S. Banic, J. Pecaric, and, S. Varosanec, Superquadratic functions and refinements of some classical inequalities, J. Korean Math. Soc. 45 (2008), no. 2, 513-525. crossref(new window)

8.
S. Banic and S. Varosanec, Functional inequalities for superquadratic functions, Int. J. Pure Appl. Math. 43 (2008), no. 4, 537-549.

9.
J. Baric, Superquadratic functions, PhD thesis, University of Zagreb, Zagreb, Croatia, 2007.

10.
M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser Boston Inc., Boston, MA, 2001.

11.
C. Dinu, Hermite-Hadamard inequality on time scales, J. Inequal. Appl. 2008 (2008), Art. ID 287947, 24 pp.

12.
S. Hilger, Ein MaBkettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universitat Wurzburg, 1988.

13.
S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990), no. 1-2, 18-56. crossref(new window)

14.
S. Hilger, Differential and difference calculus-unified!, Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens, 1996). Nonlinear Anal. 30 (1997), no. 5, 2683-2694.

15.
J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math. 30 (1906), no. 1, 175-193. crossref(new window)

16.
J. Pecaric, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, volume 187 of Mathematics in Science and Engineering, Academic Press Inc., Boston, MA, 1992.