JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOBOLEV ESTIMATES FOR THE LOCAL EXTENSION OF BOUNDARY HOLOMORPHIC FORMS ON REAL HYPERSURFACES IN ℂn
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOBOLEV ESTIMATES FOR THE LOCAL EXTENSION OF BOUNDARY HOLOMORPHIC FORMS ON REAL HYPERSURFACES IN ℂn
Cho, Sanghyun;
  PDF(new window)
 Abstract
Let M be a smooth real hypersurface in complex space of dimension , , and assume that the Levi-form at on M has at least -positive eigenvalues, . We estimate solutions of the local -closed extension problem near for -forms in Sobolev spaces. Using this result, we estimate the local solution of tangential Cauchy-Riemann equation near in Sobolev spaces.
 Keywords
tangential Cauchy-Riemann equation;boundary holomorphic forms;
 Language
English
 Cited by
 References
1.
A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. I, II, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 325-363

2.
A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. I, II, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 747-806.

3.
S. Bell, Differentiability of the Bergman kernel and pseudo-local estimates, Math. Z. 192 (1986), 467-472. crossref(new window)

4.
H. P. Boas and M.-C. Shaw, Sobolev estimates for the Lewy operator on weakly pseudo-convex boundaries, Math. Ann. 274 (1986), no. 2, 221-231. crossref(new window)

5.
A. Boggess and M.-C. Shaw, A kernel approach to the local solvability of the tangential Cauchy Riemann equations, Trans. Amer. Math. Soc. 289 (1985), no. 2, 643-658. crossref(new window)

6.
D. Catlin, Sufficient conditions for the extension of CR structures, J. Geom. Anal. 4 (1994), no. 4, 467-538. crossref(new window)

7.
D. Catlin and S. Cho, Extension of CR structures on three dimensional compact pseu-doconvex CR manifolds, Math. Ann. 334 (2006), no. 2, 253-280. crossref(new window)

8.
S.-C. Chen and M.-C. Shaw, Partial Differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, 19. American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001.

9.
S. Cho and J. Choi, Local extension of boundary holomorphic forms on real hypersurfaces in $C^n$, J. Math. Anal. Appl. 325 (2007), no. 1, 279-293. crossref(new window)

10.
S. Cho, Explicit Sobolev estimates for the Cauchy-Riemann equation on parameters, Bull. Korean Math. Soc. 45 (2008), no. 2, 321-338. crossref(new window)

11.
S. Cho, Sobolev estimates for the local extension of $\overline{\partial}_b$-closed (0, 1)-forms on real hyper- surfaces in $C^n$, Proc. of Amer. Math. Soc. 139 (2011), no. 11, 4053-4062.

12.
P. C. Greiner, J. J. Kohn, and E. M. Stein, Necessary and sufficient conditions for solvability of the Lewy equation, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), no. 9, 3287-3289. crossref(new window)

13.
R. S. Hamilton, Deformation of complex structures on manifolds with boundary I, II, J. Diff. Geom. 12 (1977), no. 1, 1-15

14.
R. S. Hamilton, Deformation of complex structures on manifolds with boundary I, II, J. Diff. Geom. 14 (1979), no. 3, 409-473.

15.
G. M. Henkin and J. Leiterer, Andreotti-Grauert theory by Integral Formulas, Birkhauser, Boston, Basel, 1988.

16.
J. J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965), 451-472. crossref(new window)

17.
M. Kuranishi, Strongly pseudoconvex CR structures over small balls. I. An a priori estimate, Ann. of Math. (2) 115 (1982), no. 3, 451-500. crossref(new window)

18.
C. Laurent-Thiebaut and J. Leiterer, On the Hartogs-Bochner extension phenomenon for differential forms, Math. Ann. 284 (1989), no. 1, 103-119. crossref(new window)

19.
H. Lewy, On the local character of the solution of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math. (2) 64 (1956), 514-522. crossref(new window)

20.
H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66 (1957), 155-158. crossref(new window)

21.
M.-C. Shaw, $L^2$ estimates and existence theorems for the tangential Caucy-Riemann complex, Invent. Math. 82 (1985), no. 1, 133-150. crossref(new window)

22.
M.-C. Shaw, $L^2$ existence theorems for the $\overline{\\partial}_b$-Neumann problem on strongly pseudoconvex CR manifolds, J. Geom. Anal. (2) 1 (1992), 139-163.

23.
S. Webster, On the proof of Kuranishi's embedding theorem, Ann. Inst. H. Poincare Anal. Non Lineaire 6 (1989), no. 3, 183-207.