JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SURFACES OF GENERAL TYPE WITH pg = 1 AND q = 0
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SURFACES OF GENERAL TYPE WITH pg = 1 AND q = 0
Park, Heesang; Park, Jongil; Shin, Dongsoo;
  PDF(new window)
 Abstract
We construct a new family of simply connected minimal complex surfaces of general type with = 1, = 0, and = 3, 4, 5, 6, 8 using a -Gorenstein smoothing theory.
 Keywords
-Gorenstein smoothing;rational blow-down surgery;surface of general type;
 Language
English
 Cited by
1.
Extending symmetric determinantal quartic surfaces, Geometriae Dedicata, 2014, 172, 1, 155  crossref(new windwow)
2.
Spherical subcategories in algebraic geometry, Mathematische Nachrichten, 2016, 289, 11-12, 1450  crossref(new windwow)
 References
1.
W. Barth, K. Hulek, C. Peters, and A. Van de Ven, Compact Complex Surfaces, 2nd ed. Springer-Verlag, Berlin, 2004.

2.
F. Catanese, Surfaces with $K^2$=pg=1 and their period mapping, Algebraic geometry (proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math. 732 (1979), 1-29.

3.
F. Catanese and O. Debarre, Surfaces with $K^2$=2, pg=1, q=0, J. Reine Angew. Math. 395 (1989), 1-55.

4.
H. Esnault and E. Viehweg, Lectures on vanishing theorems, DMV Seminar 20, Birkhauser Verlag, Basel, 1992.

5.
H. Flenner and M. Zaidenberg, Q-acyclic surfaces and their deformations, Classification of algebraic varieties (L'Aquila, 1992), 143-208, Contemp. Math., 162, Amer. Math. Soc., Providence, RI, 1994.

6.
R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math. 142 (1995), no. 3, 527-595. crossref(new window)

7.
J. Keum, Y. Lee, and H. Park, Construction of surfaces of general type from elliptic surfaces via Q-Gorenstein smoothing, Math. Z. 272 (2012), no 3-4, 1243-1257. crossref(new window)

8.
S. Kondo, Enriques surfaces with nite automorphism groups, Japan. J. Math. (N.S.) 12 (1986), no. 2, 191-282.

9.
V. Kynev, An example of a simply connected surface of general type for which the local Torelli theorem does not hold, C. R. Acad. Bulgare Sci. 30 (1977), no. 3, 323-325.

10.
Y. Lee and J. Park, A simply connected surface of general type with pg = 0 and $K^2$=2, Invent. Math. 170 (2007), no. 3, 483-505. crossref(new window)

11.
Y. Lee, A construction of Horikawa surface via Q-Gorenstein smoothings, Math. Z. 267 (2011), no. 1-2, 15-25. crossref(new window)

12.
B. D. Park, Exotic smooth structures on $3CP^2#n{\overline}{CP^2}$, Part II, Proc. Amer. Math. Soc. 128 (2000), no. 10, 3067-3073.

13.
J. Park, Exotic smooth structures on $3CP^#8\overline{CP^2}$, Bull. London Math. Soc. 39 (2007), no. 1, 95-102.

14.
H. Park, J. Park, and D. Shin, A simply connected surface of general type with pg = 0 and$K^2$=3, Geom. Topol. 13 (2009), no. 2, 743-767. crossref(new window)

15.
H. Park, A simply connected surface of general type with pg = 0 and $K^2=4$, Geom. Topol. 13 (2009), no. 3, 1483-1494. crossref(new window)

16.
A. Stipsicz and Z. Szabo, Small exotic 4-manifolds with $b^+_2$= 3, Bull. London Math. Soc. 38 (2006), no. 3, 501-506. crossref(new window)

17.
A. Todorov, A construction of surfaces with pg = 1, q = 0 and $2{\leq}(K^2){\leq}8$ : Counterexamples of the global Torelli theorem, Invent. Math. 63 (1981), no. 2, 287-304. crossref(new window)